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Objectives

1) Understand core metabolic pathways in immune cells.
- Glycolysis, oxidaAve phosphorylaAon, faBy acid oxidaAon.
- Why do immune cells depend on a specific metabolic pathway?

2) Learn strategies to metabolically engineer immune cells for cancer therapy.
- Metabolic gene deleAon/overexpression
- Small molecule inhibitors of metabolic processes
- Nutrient supplementaAon



Lecture overview

1) Introduction to immunology and cellular metabolism

2) Metabolism is closely connected to immune cell phenotype and function
1) Innate immunity: Macrophages
2) Adaptive immunity: T cells

1) CD4 T cells (helper T cells)
2) CD8 T cells (cytotoxic T cells)
3) T cell exhaustion

3) Immunotherapy of cancer: targeting metabolism
1) Dealing with metabolic factors that exhaust anti-tumor immunity
2) Metabolic engineering to enhance antitumor immunity



Overview

1) Introduction to immunology and cellular metabolism

1) How does metabolism contribute to cell function?
1) Energy
2) Building blocks for cellular function and proliferation (Lipids, proteins, nucleic acids)
3) Signaling function (e.g. epigenetics)

2) Overview of immune cell types



What is cellular metabolism?
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cytidine

uracil

Dihydropyrimidine 
dehydrogenase

(DPD)

NADPH 

NADP+

dihydrouracil

Dihydropryimidinase

β-ureidopropionate
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phosphoribosyl-
transferase

PRPP

orotidine-5'-mono-
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THF

formaminoimidazole carboxamide ribonucleotide
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+
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Thioredoxin 
reductase

NADP+

NADPH Ribonucleotide 
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+
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Glycolysis

Chandel N., NavigaNng Metabolism 2014 (book)



PET scan (Positron Emission Tomography) as evidence
of glycolytic bias in tumors

http://cancergrace.org/cancer-101/tag/pet-scans/



Mitochondria: the energy powerhouse

1Department of Molecular and Cellular Biology, College of Biological Sciences, University of California, Davis, California 95616, USA.

Mitochondria arose around two billion years ago from the engulf-
ment of an α-proteobacterium by a precursor of the modern 
eukaryotic cell1. Although mitochondria have maintained the 

double membrane character of their ancestors and the core of ATP pro-
duction, their overall form and composition have been drastically altered, 
and they have acquired myriad additional functions within the cell. As 
part of the process of acquiring new functions during evolution, most of 
the genomic material of the α-proteobacterium progenitor was rapidly 
lost or transferred to the nuclear genome2. What remains in human cells 
is a small, approximately 16 kilobase, circular genome, which is present in 
cells in a vast excess of copies relative to nuclear chromosomes.

The human mitochondrial genome contains genetic coding informa-
tion for 13 proteins, which are core constituents of the mitochondrial 
respiratory complexes I–IV that are embedded in the inner membrane. 
Functioning together with the Krebs’ cycle in the matrix, the respiratory 
chain creates an electrochemical gradient through the coupled transfer 
of electrons to oxygen and the transport of protons from the matrix 
across the inner membrane into the intermembrane space. The elec-
trochemical gradient powers the terminal complex V of the chain, ATP 
synthase, which is an ancient rotary turbine machine that catalyses the 
synthesis of most cellular ATP. The electrochemical potential is har-
nessed for additional crucial mitochondrial functions, such as buffering 
the signalling ion Ca2+ through uptake by a uniporter in the inner mem-
brane3,4. A reduction in the electrochemical potential of mitochondria 
in cells has evolved as a read-out for mitochondrial functional status, 
which, as discussed later, creates signals to activate pathways that repair 
and/or eliminate defective mitochondria.

We know from a combination of proteomics, genomics and bioin-
formatics that modern day mitochondria are comprised of well over 
1,000 proteins; the composition is plastic in nature, varying with and 
between species in response to cellular and tissue-specific organismal 
needs5–7. The origin of the mitochondrial proteome is a mixture of 
‘old’ bacterial and ‘new’ eukaryotic-derived proteins2. For example, the 
mitochondrial DNA (mtDNA) replication and transcription machines 
have distinct evolutionary origins in bacteriophage8–10, whereas the 
mitochondrial translational machinery has a clear evolutionary rela-
tionship to bacteria11. In addition to protein components, the mito-
chondrial genome encodes 22 transfer RNAs and 2 mitochondrial 
ribosome-coding RNAs, which are essential components of its own 
translational apparatus. Mitochondrial ribosome assembly in the mito-
chondrial matrix is a relatively complex and highly regulated process, 
which involves mitochondrial ribosome-coding RNA processing and 

maturation and the assembly of mitochondrial ribosomal proteins into 
small and large subunits12. However, only a fraction of mitochondrial 
ribosome proteins have identifiable homologues in bacteria13. The roles 
of mitochondrial specific ribosomal proteins are not understood, but 
these proteins are thought to have evolved to regulate the coordination 
of mitochondrial translation with extra-mitochondrial pathways in 
eukaryotic cells. Thus, like many mitochondrial machines, the ribo-
some is a mix of old and new innovations.

The nucleus-encoded proteins that make up most of the mitochon-
drial proteome are translated on cytosolic ribosomes and actively 
imported and sorted into mitochondrial sub-compartments by 
outer and inner membrane translocase machines in a manner that is 
dependent on the electrochemical potential14,15. Transcriptional, post-
transcriptional and post-translational modes of regulation exist for 
nucleus-encoded mitochondrial proteins. In humans, transcriptional 
regulation of mitochondrial biogenesis occurs through the action of the 
PGC-1 family of co-activators, which respond to changes in nutrient 
status, such as NAD+/NADH and AMP/ATP ratios (sensed through 
SIRT1 and AMPK, respectively), as well as environmental signals16,17. 
Combinatorial interactions between PGC-1 co-activators and specific 
transcription factors (NRF1, NRF2 and ERR) balance and specify the 
major functional pathways within mitochondria. Through the induc-
tion of nuclear genes that directly impinge on the maintenance of 
mtDNA, these interactions coordinate the nuclear and mitochondrial 
genomes18. Evidence in yeast suggests that nuclear-transcribed messen-
ger RNAs encoding mitochondrial proteins are post-transcriptionally 
localized to the mitochondrial outer membrane in a highly regulated 
spatial and temporal manner, and coordinately translated19,20. Although 
the underlying molecular mechanisms of mRNA targeting to mitochon-
dria are poorly understood, such pathways will probably be important in 
polarized cells such as neurons. Post-translational modifications, such 
as phosphorylation of mitochondrial import machinery components 
by cytosolic kinases, ultimately fine-tunes the proteome in response to 
metabolic cues21.

Mutations in either mtDNA genes or nuclear genes that encode the 
mitochondrial proteins required for aerobic ATP production cause a 
diverse and often devastating array of human mitochondrial diseases, 
which can affect any organ in the body at any point during a person’s 
life22. In addition, there is a high degree of clinical heterogeneity in 
mitochondrial diseases. Some of this heterogeneity can be explained 
by the fact that human cells can contain a variable ratio of mutated and 
wild-type mtDNA, a state called heteroplasmy. This seems to be the 

Mitochondria are one of the major ancient endomembrane systems in eukaryotic cells. Owing to their ability to produce 
ATP through respiration, they became a driving force in evolution. As an essential step in the process of eukaryotic evo-
lution, the size of the mitochondrial chromosome was drastically reduced, and the behaviour of mitochondria within 
eukaryotic cells radically changed. Recent advances have revealed how the organelle’s behaviour has evolved to allow the 
accurate transmission of its genome and to become responsive to the needs of the cell and its own dysfunction.

Mitochondrial form 
and function
Jonathan R. Friedman1 & Jodi Nunnari1
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Electron transport chain and oxidative phosphorylation

Emma F., et al., Nature Rev Neph, 2016



Fatty acid b-oxidation

Nomura M. et. al., (2016) Nat. Immunol.

Fatty acid oxidation produces Acetyl-CoA in 
the cytosol, which is imported by CPT 
enzymes into the mitochondria for oxidation



The TCA cycle is a major producer of cellular building blocks

The TCA cycle produces:
- three NADH,
- one FADH2
- one GTP

Chandel N., Navigating Metabolism 2014 (book)

LIPID Synthesis
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Aspartate 
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(adenosine-guanine synthesis)

Cofactors for DNMT enzymes
epigenetics



Adapted from Franco et al., Nature Metabolism 2020

Metabolism in cellular signaling
Regulation of gene expression as an example



Overview

1) Introduction to immunology and cellular metabolism

1) How does metabolism contribute to cell function?
1) Energy
2) Building blocks for cellular function and proliferation (Lipids, proteins, nucleic acids)
3) Signaling function (e.g. epigenetics)

2) Overview of immune cell types



Innate and adaptive immune response

 
Protein Kinases 124 

2. Immune response to invading microorganisms  
In mammals, immune system can be subdivided into two branches: innate and adaptive 
immunity. Following infection, innate immune cells like macrophages, dendritic cells (DCs) 
and neutrophils (collectively called phagocytes) engulf and destroy microorganisms, 
representing that way a rapid first defense barrier against infection. In turn, adaptive 
immunity is mediated via the generation of antigen-specific B and T lymphocytes, through a 
process of gene rearrangement resulting in the production and development of specific 
antibodies and killer T cell, respectively. Adaptive immunity is also behind immunological 
memory, allowing the host to rapidly respond when exposed again to the same pathogen. 
Contrarily to the originally thought, the innate immune response is not completely 
nonspecific, but rather is able to discriminate between self antigens and a variety of 
pathogens (Akira et al., 2006). Furthermore, much evidence has demonstrated that 
pathogen-specific innate immune recognition is a prerequisite to the induction of antigen-
specific adaptive immune responses (Hoebe et al., 2004; Iwasaki & Medzhitov, 2010), being 
dendritic cells central players in this linking (Steinman, 2006). DCs are specialized antigen-
presenting cells that function as sentinels, scanning changes in their local microenvironment 
and transferring the information to the cells of the adaptive immune system (Banchereau & 
Steinman, 1998; Banchereau et al., 2000). Upon activation by microorganisms or 
microorganism components, immature DCs suffer a complex process of morphological, 
phenotypical and functional modifications to become mature DCs that enter draining 
lymphatic vessels and migrate to the T-cell zones of draining lymph nodes where they 
present antigens to T lymphocytes. Depending on their maturation/activation profile, DCs  

 
Fig. 1. Dendritic cells link innate to adaptive immunity. Once in contact with microbial 
antigens, DCs mature and migrate to draining lymph nodes where they present antigens to 
naïve T lymphocytes. Different pathogens trigger disticnt DCs maturation profiles, leading 
to the polarization of different T-cell subsets. The adaptive immune response is therefore 
modulated, in some extent, to match the nature of the pathogen. Ag: antigen; CTL: cytotoxic 
T cell; DC: dendritic cell; Mφ: macrophage. 

www.intechopen.com
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Lecture overview

1) Introduction to immunology and cellular metabolism

2) Metabolism is closely connected to immune cell phenotype and function
1) Innate immunity: Macrophages
2) Adaptive immunity: T cells

1) CD4 T cells (helper T cells)
2) CD8 T cells (cytotoxic T cells)
3) T cell exhaustion

3) Immunotherapy of cancer: targeting metabolism
1) Dealing with metabolic factors that exhaust anti-tumor immunity
2) Metabolic engineering to enhance antitumor immunity
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Macrophage polarization is accomplished by engagement of specific metabolic pathways
LPS, INFg IL4, IL13

Pro-inflammatory and immunosupportive Anti-inflammatory and immunosuppressive
Geeraerts et al., Front in Imm, 2017



Metabolic preference in activated macrophages

Vats D. et. al., (2006) CeLl Metab.



Warburg glycolysis is essential for M1 activation 

Tannahill G. et. al., (2013) Nature2DG: 2-deoxyGlucose (glucose competitor-inhibits glycolysis



Fatty acid oxidation is essential for M2 activation 

Vats D. et. al., (2006) Cell Metab.



Histone lactylation, a new epigenetic modification

Zhang et al., Nature 2019

Izzo and Wellen, Nature 2019



Overview

1) Introduction to cellular metabolism

2) Metabolism is closely connected to immune cell phenotype and function
1) Innate immunity: Macrophages
2) Adaptive immunity: T cells

1) CD4 T cells (helper T cells)
2) CD8 T cells (cytotoxic T cells)
3) T cell exhaustion

3) Immunotherapy of cancer: targeting metabolism
1) Dealing with metabolic factors that exhaust anti-tumor immunity
2) Metabolic engineering to enhance antitumor immunity
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lymphatic vessels and migrate to the T-cell zones of draining lymph nodes where they 
present antigens to T lymphocytes. Depending on their maturation/activation profile, DCs  

 
Fig. 1. Dendritic cells link innate to adaptive immunity. Once in contact with microbial 
antigens, DCs mature and migrate to draining lymph nodes where they present antigens to 
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3 signals are required to fully activate a T cell
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The T cell response to acute infection and vaccination

IY37CH19-Wherry ARjats.cls March 30, 2019 10:52

It is also now clear that T cell exhaustion has a major role in immune dysfunction in cancer (22,
23). Indeed, tumor-specific CD8 T cells display hallmarks of T cell exhaustion and dysfunction
in mouse models (24, 25) and human cancers including, but not limited to, melanoma (26–30),
chronic myeloid leukemia (24), ovarian cancer (31), non–small cell carcinoma (32, 33), Hodgkin
lymphoma (34), and chronic lymphocytic leukemia (35, 36). Exhausted tumor-infiltrating
lymphocytes (TILs) are characterized by high expression of IRs, poor effector functions, and a
common transcriptional and epigenetic program (27–31, 33, 35, 37–44). T cell exhaustion in the
context of cancer is discussed further throughout this review.
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Memory T cells ensure long-lasting immune protection

Nature Reviews | Immunology
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Concluding remarks
The upshot of these and many other studies that we 
could not discuss owing to space limitations is that vari-
ous signals, acting in concert, contribute to the ultimate 
characteristics of memory CD8+ T-cell populations 
elicited by infection or vaccination. Interestingly, many 
of these signals such as pro-inflammatory cytokines 
originate from the innate immune system and depend 
on activation of specific PRRs to identify the nature of 
the pathogen. Therefore, different pathogens will elicit 
innate immune responses with both common and 
unique features, which in turn will ‘tailor’ the adaptive 
memory CD8+ T-cell response. In this regard, future 
studies to determine the differences in the memory 
phenotype that is generated after infections with 
diverse pathogens, in concert with detailed analyses of 
concurrent innate immune responses, will be essential 
to determine the range of heterogeneity in CD8+ T-cell 
memory populations. Major challenges for the future 
include identification of the precise input signals that 

shape CD8+ T-cell memory and determination of the 
molecular basis for how the responding CD8+ T cells 
decode the myriad of signals encountered during 
immune responses to generate effective memory. This 
information will provide the crucial platform to design 
interventions to manipulate specific input signals and 
enhance vaccination by improving the numerical or 
qualitative aspects of the resulting memory CD8+ T-cell 
populations. Importantly, many of the signals that shape 
CD8+ T-cell memory have the potential to affect other 
aspects of the adaptive (B cells and CD4+ T cells) or 
innate (NK cells, macrophages, neutrophils and DCs) 
immune responses. Therefore, future endeavours should 
incorporate a holistic approach to enhance vaccination. 
Finally, detailed analyses to identify how and why mul-
tiple antigen exposures influence the characteristics 
of memory CD8+ T-cell responses remains a largely 
untapped but potentially fertile area of experimentation 
with important implications for human vaccines based 
on prime–boost strategies.

Figure 6 | Primary and secondary CD8+ T-cell memory. a | Kinetics of the CD8+ T-cell response to the initial (primary 
memory response) and subsequent (secondary memory response) infections. Booster infection or vaccination can increase 
secondary memory CD8+ T-cell numbers compared with primary stimulation. b | The number of antigen encounters has a 
dramatic impact on the characteristics of the resulting CD8+ T-cell memory populations. For example, most memory CD8+ 
T cells (induced after primary immunization) will convert into CD62L+CD8+ T cells weeks (with Listeria monocytogenes) or 
months (with lymphocytic choriomeningitis virus (LCMV)) after primary infection. A fraction (~30–40%) of these stable 
primary memory populations will produce interleukin-2 (IL-2) following antigen stimulation. Following secondary 
challenge primary memory CD8+ T cells will rapidly expand and become secondary effector CD8+ T cells (secondary 
immunization) that will go through a prolonged contraction phase to establish secondary memory CD8+ T cells at numbers 
that are higher than those obtained  following primary infection. Secondary memory CD8+ T cells show a substantially 
decreased rate of memory turnover, fail to upregulate CD62L expression and produce IL-2. In a limited number of reports 
to date secondary memory CD8+ T cells need years after secondary challenge to become predominately CD62Lhi T cells. 
LOD, limit of detection.
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Long-lasDng stem cell–like memory CD8+ T cells with a 
naïve-like profile upon yellow fever vaccinaDon 

Fuertes Marraco, Speiser, et al., Sci. Transl. Med., 2015

reports so far have addressed the phenotype of YF-specific CD8+ T cells
with particular emphasis in the first 90 days after vaccine administra-
tion, and very limited data exist at later time points. The EMRA phe-
notype for instance has been observed in
limited numbers of donors and only up un-
til 46 months after vaccination (13, 16, 20).
Here, we aimed to thoroughly character-
ize the memory CD8+ T cells that persist
in the long term, in the range of decades
after YF vaccination.

RESULTS

The YF-17D vaccine induces a
naïve-like population of
antigen-experienced CD8+ T cells
that is stably maintained for
more than 25 years
We studied a cohort of 41 healthy volun-
teers vaccinated with YF-17D, between
3 months and 35 years ago, including
four individuals having received multiple
vaccines (table S1). To detect YF-specific
CD8+ T cells, we used HLA-A*02 tetra-
mers to stain cells bearing a T cell receptor
(TCR) specific for the highly prevalent
NS4b214−222 epitope, hereafter referred as
A2/NS4b (Fig. 1A) (13, 14, 16). A2/NS4b+

CD8+ T cells were detected in the large
majority of vaccinees, with only 3 of 41 do-
nors having frequencies below 0.01% and
considered negative (Fig. 1B). Remark-
ably, A2/NS4b+ CD8+ T cells were detected
over at least 25 years after vaccination,
albeit at decreasing frequencies with time
(Fig. 1B).

To study the differentiation status of
YF-specific CD8+ T cells, we defined sub-
sets based on the expression of conven-
tional markers CCR7 and CD45RA, namely,
naïve (CCR7+ CD45RA+), CM (CCR7+

CD45RA−), EM (CCR7− CD45RA−), and
EMRA (CCR7− CD45RA+) subsets (6),
as indicated in Fig. 1C. A2/NS4b+ CD8+

T cells showed considerable heterogene-
ity in subset distribution among donors.
Overall, only a few donors showed sub-
stantial CM populations, and the largest
proportion of cells were found either in
the EMRA subset or, surprisingly, falling
within the conventional naïve gate (Fig. 1,
D and E).We hereafter termed these CCR7+

CD45RA+ A2/NS4b+ CD8+ T cells “naïve-
like” because they appeared in the con-
ventional naïve gate, but their “genuine
naïve versus memory” nature was to be de-
termined, as addressed throughout the

experiments that follow. Moreover, we observed that these A2/NS4b+

naïve-like CD8+ T cells displayed variable levels for CCR7 and
CD45RA. There was either CCR7high CD45RAhigh expression (hereafter
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Fig. 1. A2/NS4b+ CD8+ T cells persist long term af-
ter YF vaccination, featuring a naïve-like popula-
tion. Forty-one vaccinees were studied, covering
0.27 to 35 years after vaccination (table S1). Un-
vaccinated donors (UN; n = 10) were studied as controls. (A) Representative flow cytometry plots showing
A2/NS4b tetramer staining of total CD8+ T cells. (B) Frequencies of A2/NS4b+ cells within total CD8+ T in
unvaccinated controls and in vaccinees versus years since vaccination. Donors below 0.01% were considered
negative. •, vaccinees (n = 34);˚, vaccinees with multiple vaccines (n = 4; time since last vaccination is taken
into account);⋄, unvaccinated controls (UN; n = 3 of 10); ×, excluded donors [vaccinees (n = 3 of 41) or
unvaccinated controls (n = 7 of 10)]. Linear regressions correspond to the single-shot vaccinees group (•),
indicating goodness of fit (R2) and 95% confidence intervals. (C) Gating strategy to discriminate differen-
tiation subsets based on the conventional markers CCR7 and CD45RA, as indicated. (D) Representative flow
cytometry plots showing subsets (CCR7 versus CD45RA) in A2/NS4b+ CD8+ T cells from various vaccinees.
(E) Subset distribution (%) within A2/NS4b-specific CD8+ T cells across vaccinees, ordered vertically with
increasing “years since vaccination.”
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3 4 signals are required to fully acDvate a T cell

 
Protein Kinases 124 

2. Immune response to invading microorganisms  
In mammals, immune system can be subdivided into two branches: innate and adaptive 
immunity. Following infection, innate immune cells like macrophages, dendritic cells (DCs) 
and neutrophils (collectively called phagocytes) engulf and destroy microorganisms, 
representing that way a rapid first defense barrier against infection. In turn, adaptive 
immunity is mediated via the generation of antigen-specific B and T lymphocytes, through a 
process of gene rearrangement resulting in the production and development of specific 
antibodies and killer T cell, respectively. Adaptive immunity is also behind immunological 
memory, allowing the host to rapidly respond when exposed again to the same pathogen. 
Contrarily to the originally thought, the innate immune response is not completely 
nonspecific, but rather is able to discriminate between self antigens and a variety of 
pathogens (Akira et al., 2006). Furthermore, much evidence has demonstrated that 
pathogen-specific innate immune recognition is a prerequisite to the induction of antigen-
specific adaptive immune responses (Hoebe et al., 2004; Iwasaki & Medzhitov, 2010), being 
dendritic cells central players in this linking (Steinman, 2006). DCs are specialized antigen-
presenting cells that function as sentinels, scanning changes in their local microenvironment 
and transferring the information to the cells of the adaptive immune system (Banchereau & 
Steinman, 1998; Banchereau et al., 2000). Upon activation by microorganisms or 
microorganism components, immature DCs suffer a complex process of morphological, 
phenotypical and functional modifications to become mature DCs that enter draining 
lymphatic vessels and migrate to the T-cell zones of draining lymph nodes where they 
present antigens to T lymphocytes. Depending on their maturation/activation profile, DCs  

 
Fig. 1. Dendritic cells link innate to adaptive immunity. Once in contact with microbial 
antigens, DCs mature and migrate to draining lymph nodes where they present antigens to 
naïve T lymphocytes. Different pathogens trigger disticnt DCs maturation profiles, leading 
to the polarization of different T-cell subsets. The adaptive immune response is therefore 
modulated, in some extent, to match the nature of the pathogen. Ag: antigen; CTL: cytotoxic 
T cell; DC: dendritic cell; Mφ: macrophage. 
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T cell clonal expansion and differenDaDon requires a 
massive acDvaDon of specific metabolic pathways
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The nutrient-sensing kinase mTOR signals through 
two complexes, mTORC1 and mTORC2, and promotes 
AKT activation (through mTORC2), glycolysis, clonal 
expansion and the generation of effector T cells102. The 
PI3K–AKT–mTOR pathway is activated by TCR signal-
ling and sustained by pro-inflammatory cytokines such 
as IL-2 and IL-12 (REFS 65,103–105). By contrast, cellu-
lar stress and ATP deprivation activate AMPK, which 
in turn inhibits mTOR and enhances fatty acid oxida-
tion, autophagy and other stress responses to cope with 
limiting resources100,101,104,106. Although widely known for 
its immunosuppressive effects, surprisingly the mTOR 
inhibitor rapamycin enhances the formation of memory 
CD8+ T cells and their precursors when administered 
at low doses during LCMV infection65,67,103,104. AMPK 
activity is thought to promote memory CD8+ T cell 
development, because treatment with metformin (an 
AMPK activator) or overexpression of carnitine pal-
mitoyltransferase 1A (which increases mitochondrial 
fatty acid transport and oxidation) augments memory 
CD8+ T cell development during L. monocytogenes infec-
tion104,106. Together, these studies suggest that a metabolic 
switch from glycolysis to fatty acid oxidation or other 
catabolic processes is required for effector CD8+ T cells 
to survive and develop into memory CD8+ T cells. A 
prediction of this model would be that, compared with 
other effector CTLs, IL-7Rαhi memory precursor cells 
more efficiently undergo this metabolic switch to persist 
long-term.

In addition to the direct effects of mTOR on T cell 
metabolism, several recent studies have outlined a 
crucial role for mTOR in regulating STAT activity 
and the expression of several key transcription factors 
that control effector and memory T cell development. 
For example, mTORC1 helps to specify TH1 and TH17 
cells, whereas mTORC2 has a greater role in TH2 cell 
development, by differentially regulating the activ-
ity of STAT4, STAT3 and STAT6, respectively94,107.  
A deficiency of both mTORC1 and mTORC2 in 
T cells impairs the development of all three effector 
CD4+ T cell types (TH1, TH2 and TH17 cells), but not 
that of TReg cells; this is in keeping with the notion that 
effector T cells primarily use glucose for fuel, whereas  
TReg cells primarily use fatty acids94,107,108. Other reports 
have extended this paradigm to CD8+ T cells by show-
ing that IL-12–STAT4 signalling sustains PI3K–AKT–
mTOR activity and inhibits the transcription factor 
FOXO1, which functions as a molecular switch to 
simultaneously induce T-bet expression and repress 
EOMES expression65,67,109 (FIG. 4b). Given that increased 
T-bet expression drives the formation of terminally 
differentiated KLRG1hiIL-7Rαlow effector CD8+ T cells 
during viral infection6, this finding helps to explain 
why the inhibition of mTOR activity with rapamycin 
or metformin promotes memory cell formation in the 
above studies. In addition to T-bet and EOMES, FOXO1 
regulates the expression of other key genes involved in 
effector and memory CD8+ T cell migration and sur-
vival, such as those encoding IL-7Rα, CC-chemokine 
receptor  7 (CCR7), CD62L, BCL-2, Krüppel-like  
factor 2 (KLF2) and IFNγ67,109,110.

Figure 4 | /QFGN�HQT�VJG�OGVCDQNKE�TGIWNCVKQP�QH�GHHGEVQT�CPF�OGOQT[�6�EGNN�
FKHHGTGPVKCVKQP�� a�̂ �4GUVKPI�PCKXG�QT�OGOQT[�6|EGNNU�RTKOCTKN[�IGPGTCVG�#62�VJTQWIJ� 
HCVV[�CEKF�QZKFCVKQP�CPF�OKVQEJQPFTKCN�TGURKTCVKQP�
YJKEJ�CTG�ECVCDQNKE�RTQEGUUGU���DWV�
HQNNQYKPI�CEVKXCVKQP�VJG�6|EGNNU�WPFGTIQ�C�OGVCDQNKE�UYKVEJ�VQ�NKRKF�U[PVJGUKU�
CP�CPCDQNKE�
RTQEGUU��CPF�CGTQDKE�IN[EQN[UKU�VQ�OGGV�VJG�DKQGPGTIGVKE�CPF�DKQU[PVJGVKE�FGOCPFU�HQT�
TCRKF�ENQPCN�GZRCPUKQP�CPF�VJG�RTQFWEVKQP�QH�GHHGEVQT�OQNGEWNGU��(QNNQYKPI�RCVJQIGP�
ENGCTCPEG��KV�JCU�DGGP�RTQRQUGF�VJCV�GHHGEVQT�%&�+�6|EGNNU�TGFWEG�VJGKT�FGRGPFGPEG�QP�
IN[EQN[UKU�CPF�CTG�ITCFWCNN[�nTGUGVo�DCEM�VQ�C�OQTG�ECVCDQNKE�UVCVG�VQ�UWTXKXG�CPF�HWTVJGT�
FGXGNQR�KPVQ�OGOQT[�%&�+�6|EGNNU��D�̂ �+P�TGURQPUG�VQ�6|EGNN�TGEGRVQT�
6%4���EQ�UVKOWNCVQT[�
CPF�E[VQMKPG�UKIPCNU��VJG�CEVKXKV[�QH�VJG�RJQURJQKPQUKVKFG���MKPCUG�
2+�-�s#-6sOCOOCNKCP�
VCTIGV�QH�TCRCO[EKP�
O614��RCVJYC[�JCU�C�MG[�TQNG�KP�TGIWNCVKPI�GHHGEVQT�%&�+�6|EGNN�
OGVCDQNKUO�CPF�FKHHGTGPVKCVKQP�D[�QTEJGUVTCVKPI�PWVTKGPV�WRVCMG��RTQVGKP�VTCPUNCVKQP�CPF�
NKRKF�U[PVJGUKU�KP�TCRKFN[�RTQNKHGTCVKPI�GHHGEVQT�6|EGNNU��6[RKECNN[�#-6�HWPEVKQPU�WRUVTGCO�QH�
O614�EQORNGZ|��
O614%���CPF�FQYPUVTGCO�QH�O614%���DWV�C�TGEGPV�UVWF[����JCU�UJQYP�
VJCV�5��MKPCUG�
5�-��ECP�DG�CEVKXCVGF�KPFGRGPFGPVN[�QH�#-6�KP�%&�+�6�EGNNU��$[�EQPVTCUV��
EGNNWNCT�UVTGUU�CPF�#62�FGRTKXCVKQP�
VJCV�KU��CP�KPETGCUGF�#/2�VQ�#62�TCVKQ��CEVKXCVG�
#/2�CEVKXCVGF�RTQVGKP�MKPCUG�
#/2-���YJKEJ�KP�VWTP�KPJKDKVU�O614�CPF�GPJCPEGU�HCVV[�
CEKF�QZKFCVKQP�VQ�EQRG�YKVJ�NKOKVKPI�TGUQWTEGU��+P�CFFKVKQP��VJGUG�RCVJYC[U�ECP�OQFWNCVG�
GHHGEVQT�6|EGNN�HCVG�FGEKUKQPU�VJTQWIJ�VTCPUETKRVKQPCN�TGIWNCVKQP��5WUVCKPGF�2+�-s#-6s
O614�CEVKXKV[�KPJKDKVU�HQTMJGCF�DQZ|1��
(1:1����YJKEJ�CEVU�CU�C�OQNGEWNCT�UYKVEJ�VQ�
UKOWNVCPGQWUN[�KPFWEG�6�DGV�CPF�TGRTGUU�GQOGUQFGTOKP�
'1/'5��GZRTGUUKQP��CPF�
VJGTGD[�RTQOQVGU�VJG�ENQPCN�GZRCPUKQP�CPF�VGTOKPCN�FKHHGTGPVKCVKQP�QH�GHHGEVQT�6�EGNNU��
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mTOR plays a central role in CD8 T cell activation and 
differentiation



mTORC2 controls CD8 T cell memory differenDaDon in a 
FOXO1-dependent manner

(TCR), co-stimulation, cytokines, and nutrients to regulate cell
proliferation and differentiation (Zhang et al., 2012). Indeed,
mTORC1 is required for Th1, Th2, Th17, and invariant natural
killer T (iNKT) cell differentiation (Delgoffe et al., 2009, 2011;
Shin et al., 2014; Yang et al., 2013; Zhang et al., 2014). Interest-
ingly, pharmacological inhibition of mTORC1 by rapamycin in
acutely Lymphocytic choriomeningitis virus (LCMV)-infected
mice leads to increased magnitude and qualities of memory
CD8 T cell differentiation (Araki et al., 2009; Pearce et al.,
2009). Consistently, deletion of TSC1 or TSC2, the upstream in-
hibitor of mTORC1, drives stronger effector responses but im-
pairs memory formation (Krishna et al., 2014; Shrestha et al.,
2014). Recently, the Rictor containing mTORC2 or its down-
stream target serum- and glucocorticoid-regulated kinase
(SGK1) have been shown to promote Th2 differentiation (Del-

Figure 1. Rictor-Deficient CD8 T Cells
Mount Effective Effector Responses to
Infection
(A) Schematic of LM-OVA infection. 10, 000 WT or

Rictor KO naive OT-1 cells were transferred into

naive CD45.1 recipients, followed by injection of

2,000 CFUs of LM-OVA N4 or T4 i.v.

(B) Flow cytometry analysis of CD8 and CD45.2

cells in the spleen and pLNs.

(C) The percentages and absolute numbers of

transferred WT or Rictor KO OT-1 cells harvested

in the spleen (top) and pLNs (bottom) were quan-

tified after N4 infection.

(D) In vitro killing assay with Cr51 release or sorted

WT or Rictor KO effector OT-1 cells on day 7 after

infection were incubated with SIINFEKL peptide-

pulsed (left) or -non-pulsed (right) EL-4 target cells

at different ratios.

(E–G) Representative overlay histograms and the

mean fluorescence intensity (MFI) of granzyme B

(E), perforin (F), or CD107a (G) expression on

transferred WT or Rictor KO OT-1 cells on day 7

after LM-OVA N4 infection. In (E) and (F), the

shaded gray histograms represent background

levels in gated CD4 T cells. For CD107a, the

shaded gray histogram represents WT OT-1 cells

without SIINFEKL peptide stimulation.

Data are representative of three or four indepen-

dent experiments and are presented as the mean

± SEM (4–6 mice/group). **p < 0.01; ***p < 0.001;

ns, not significant. See also Figure S1.

goffe et al., 2011; Heikamp et al., 2014).
However, the role mTORC2 may have in
shaping CD8 T cell effector and memory
generation remains unknown.

RESULTS

Rictor-Deficient CD8 T Cells Mount
Effective Effector Responses
To investigate the role of mTORC2 in
shaping CD8 effector and memory dif-
ferentiation, we crossed Rictor knockout
(KO) mice onto an OT-1 background

and tested how Rictor deficiency would affect the CD8
response to Listeria monocytogenes ovalbumin (LM-OVA)
infection. Using this system, Zehn et al. (2009) showed that
the strength of TCR-ligand interaction critically affects CD8
T cell expansion, contraction, and migration. Therefore, we
transferred equal numbers of WT (Rictorflox/flox: CD4-Cre!) or
Rictor KO (Rictorflox/flox: CD4-Cre+) OT-1 cells separately into
naive hosts that were then infected with LM recombinants en-
coding the natural ligand SIINFEKL (N4) or one altered peptide
ligand, SIITFEKL (T4), with about 100-fold lower functional avid-
ity for the OT-1 TCR (Zehn et al., 2009; Figure 1A). A similar
engraftment efficiency of transferred WT and Rictor KO OT-1
cells was confirmed 1 day later, before LM-OVA infection
(data not shown). On day 7 after infection, Rictor KO OT-1 cells
showed a 2-fold reduced frequency and absolute number of

Cell Reports 14, 1206–1217, February 9, 2016 ª2016 The Authors 1207

effector cells compared with the wild-type (WT) in response to
either N4 or T4 stimulation in the spleen, liver, lung, and bone
marrow (Figures 1B, 1C, and S1A!S1C; data not shown).
However, the levels of transferred CD8 T cells in the periph-
eral lymph node (pLN) were comparable, suggesting that
T cell trafficking might also be regulated by mTORC2 (Figures
1B and 1C). To determine whether the reduced CD8 T cell
response in the absence of Rictor was due to decreased pro-
liferation or increased apoptosis, we first measured Ki67
expression on day 5 after infection. As expected, N4 infection
triggered higher Ki67 expression than T4, confirming the
higher expansion capacity upon strong ligand stimulation (Fig-
ure S1D). Consistent with the reduced CD8 T cell levels, Ki67
expression in Rictor KO OT-1 cells was reduced compared
with WT OT-1 cells after N4 infection (Figure S1D). In contrast,
Rictor deficiency did not detectably affect the apoptosis rate
of effector CD8 T cells (Figure S1E). These data suggest
that mTORC2 is required for CD8 sustained proliferation and
accumulation.

Next we examined whether Rictor-deficient CD8 T cells
were capable of killing antigenic target cells. We found that

Figure 2. Rictor Deficiency Leads to
Enhanced MPEC Generation while
Reducing SLECs.
(A) Representative FACS plots showing KLRG1,

CD127, CD27, CD62L, CD44, and CXCR3 staining

patterns on gated transferred OT-1 cells in the

spleen on day 7 after LM-OVA N4 infection.

(B and C) The frequencies (B) and absolute

numbers (C) of KLRG1hi CD127lo, KLRG1lo

CD127hi, and CD62L+CD44+ on gated transferred

OT-1 cells in the spleen are summarized.

(D) Intracellular Bcl-2 expression was determined

by flow cytometry.

(E) The MFI of Bcl-2 was determined in the spleen

(left) and pLN (right).

Data are representative of three or four indepen-

dent experiments and are presented as the mean

± SEM (4–6 mice/ group). *p < 0.05, **p < 0.01,

***p < 0.001. See also Figure S2.

Rictor KO effector cells could kill target
EL-4 cells pulsed with SIINFEKL pep-
tide as efficiently as WT effectors (Fig-
ure 1D). Granzyme B and perforin are
the key effector molecules responsible
for direct cytotoxicity of CD8 T cells.
In line with comparable killing ability
in vitro, both WT and Rictor KO effector
cells expressed similar high levels of
granzyme B and perforin (Figures 1E
and 1F). Furthermore, CD107a expres-
sion, a degranulation marker correlated
with cytolytic capacity, was strongly
upregulated at the surface membrane
of Rictor KO effector cells upon
in vitro peptide restimulation (Figure 1G).
Together, our data suggest that acqui-

sition of CD8 T cell effector function is independent of
mTORC2.

Rictor Deficiency Leads to Enhanced MPEC Generation
while Reducing SLECs
Upon infection, antigen-primed CD8 T cells undergo differentia-
tion into SLECs and MPECs. SLECs, defined as KLRG1hi

CD127lo, undergo massive apoptosis during the contraction
phase after the infection clears, whereas KLRG1lo CD127hi

MPECs show increased potential to differentiate further into
long-lived memory lineage cells. To examine whether mTORC2
regulates SLEC and MPEC commitment, we determined the
expression profiles of KLRG1, CD127, and CD27 onWT or Rictor
KO effector OT-1 cells at the peak of the response to primary
infection. We found a significant reduction of KLRG1hi CD127lo

SLECs in the absence of Rictor (Figures 2A and 2B). Conversely,
the levels of KLRG1lo CD127hi MPECs were 2- to 3-fold higher in
Rictor KO than in WT responding cells (Figures 2A–2C). Consis-
tently, we also found increased percentages of the KLRG1lo

CD27+ population in the absence of Rictor (Figure 2A). Strikingly,
we observed a marked increase (more than 10-fold) in the
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(data not shown). Blimp1 drives terminal differentiation into ef-
fectors cells, whereas Bcl-6 promotes MPEC differentiation (Ji
et al., 2011; Rutishauser et al., 2009). However, we did not
observe any detectable change in Blimp1 and Bcl-6 expression
with Rictor deficiency (Figures 5E and 5F). Id2 and Id3 have been
shown to control CD8 effector and memory differentiation (Ji
et al., 2011; Yang et al., 2011). Consistent with increased mem-
ory formation, we found a slight but significant increase in Id3
expression at the transcription level, whereas Id2 expression re-
mained comparable (Figure 5G).

Tcf-1, the downstream target of the Wnt signaling pathway, is
required for CD8 memory generation and recall response (Jean-
net et al., 2010; Zhou et al., 2010). Consistent with increased
CD8 memory formation in the absence of Rictor, Tcf-1 expres-
sion was enhanced significantly in Rictor KO cells compared
with the WT on day 14 after primary infection in all organs as-
sessed (Figures 6A, 6B, S5C, and S5D). Both the Tcf-1 nuclear
localization pattern and higher expression in the absence of Ric-
tor could be visualized directly at the single-cell level and quan-
tified by Imagestream flow analysis (Figure 6B).

Figure 6. Rictor Deficiency Promotes Tcf-1
Expression and Foxo1 Nuclear Accumula-
tion.
(A) Top: representative overlay histograms

showing Tcf-1 expression on day 14 after infection

in the spleen. Bottom: the MFI of Tcf-1 expression

in the spleen is summarized.

(B) Imagestream analysis of Tcf-1 expression on

day 14 after infection. DAPI was used as a coun-

terstain to determine the localization of Tcf-1 in the

nucleus.

(C) Representative overlay histograms showing

pAkt473 (top) and pFoxo1/3a (bottom) expression

4.5 days after infection in the spleen.

(D) Foxo1 localization was determined with

confocal microscopy 4.5 days after LM-OVA N4

infection in the spleen.

Data are representative of two or three indepen-

dent experiments and are presented as the mean

± SEM. **p < 0.01. See also Figure S5.

In terms of metabolic activity, primed
CD8 T cells switch from oxidative
phosphorylation (OXPHOS) to glycolysis,
whereas CD8 memory T cells, unlike
effector or naive CD8 T cells, exhibit sub-
stantial spare respiratory capacity (SRC)
in their mitochondria (van der Windt
et al., 2012; Waickman and Powell,
2012). IL-15, a crucial cytokine support-
ing CD8 memory T cell generation,
regulates SRC and oxidative metabolism
by promoting carnitine palmitoyl trans-
ferase (CPT1a) expression (van der Windt
et al., 2013). To understand the connec-
tion between CD8 effector or memory
differentiation and metabolic changes
brought about by dysregulated mTORC2

signaling, we primed WT or Rictor KO naive OT-1 cells with
SIINFEKL peptide and IL-2 for 3 days and continued to culture
in the presence of IL-2 or IL-15 for another 3-4 days to generate
in vitro ‘‘effector’’ or ‘‘memory’’ cells, respectively. First, we
confirmed the increased SRC with IL-15-treated WT CD8
T cells compared with IL-2 cultured cells (Figures S6A and
S6B). Consistent with enhanced memory differentiation, Ric-
tor-deficient OT-1 cells cultured in IL-15 showed increased
SRC compared with the WT. Interestingly, even when cultured
in the presence of IL-2, which promotes effector differentiation,
Rictor KO cells showed a striking increase in SRC (Figures S6A
and S6B). Memory CD8 T cells preferentially use mitochondrial
fatty acid oxidation (FAO) for their energy supply (Pearce et al.,
2009; van der Windt et al., 2013). By using etomoxir, an inhibitor
of CPT1a, we observed a pronounced decrease in oxygen con-
sumption rate (OCR) (an indicator of OXPHOS) in either WT or
Rictor KO CD8 T cells cultured with IL-15, suggesting that these
memory CD8 T cells highly depend on FAO (Figures S6C and
S6D). In contrast, WT CD8 T cells cultured in IL-2 are less
dependent on FAO to generate energy (Figures S6C and S6D).
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T cell clonal expansion requires a massive activation of 
specific metabolic pathways

formation associated with metabolic reprogramming [58]. Indeed, mTORC2-deficient mouse
CD8+ T cells showed increased SRC and FAO, even when cultured with IL-2, indicating that
metabolic reprogramming could prevail even under conditions favoring effector T cell differen-
tiation [58]. How mTORC2 deficiency is linked to this metabolic feature is currently under
investigation [27,58].
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Figure 1. Metabolic Features of Naïve, Effector, Memory and Exhausted CD8+ T Cells in Mice. Various CD8+ T cell subsets rely on distinct metabolic
pathways for survival and function. Naïve CD8+ T cells (A) are quiescent and highly dependent on mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP
for survival and homeostasis maintenance. Effector CD8+ T cells (B) engage glycolysis and glutaminolysis to generate the building blocks required to sustain the
proliferative burst (both glycolysis and OXPHOS) and the acquisition of effector functions (glycolysis). Mitochondrial reactive oxygen species (ROS) generation is also
important for T cell activation. In addition, effector cells uptake extracellular fatty acids (FAs) and store excess ones in lipid droplets. Despite higher dependence on fatty
acid oxidation (FAO) to enhance spare respiratory capacity (SRC), CD8+ central memory T cells (Tcm) (C) use cell-intrinsic lysosomal acid lipase (LAL)-mediated lipolysis
of triacylglycerides (TAGs) to fuel FAO rather than uptaking extracellular free FAs. Intracellular TAG synthesis and storage in CD8+ Tcm cells are controlled by cell surface
aquaporin 9 (AQP9), which mediates glycerol transport. Exhausted CD8+ T cells (D) show dysregulated glycolysis and mitochondrial metabolism. In particular, they
show defective mitochondrial activity and structure, at least in part due to decreased peroxisome proliferator-activated receptor gamma coactivator 1a (PGC1a)
expression. Programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been shown to inhibit glycolysis and PD-1 also regulates
FAO and glutaminolysis.
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Taken together, these results are consistent with our metabolic
flux data and indicate that global regulation of metabolic gene
transcription is involved in activation-induced T cell metabolic
reprogramming.

Myc, but Not HIF1a, Is Required for Activation-Induced
T Cell Metabolic Reprogramming
With an in silico approach (Roider et al., 2009), transcription
factors possibly involved in activation-induced T cell metabolic
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Figure 1. Stimulation of TCR and CD28 Drives T Cell Metabolic Reprogramming
(A) Intracellular metabolites in T cells collected at the indicated times after activation were profiled by mass spectroscopy. The value for each metabolite

represents the average of triplicates and the amount of each metabolite in resting T cells was set to 1. The heat map represents the log2 value of the relative

amount of eachmetabolite, which was grouped in the indicated metabolic pathways (see color scale). The complete metabolomic profile is provided in Table S1.

(B–F) Metabolic assays, with the isotopically labeled tracer used highlighted in red (left). Resting T cells (Rest) and activated T cells (collected at 24 hr after

activation in D–F or at the indicated times after activation in B andC) were used for measuring the generation of 3H2O from [3-3H]-glucose (glycolysis, right panel in

B) or from [9,10-3H]-palmitic acid (FAO, right panel in C); the generation of 14CO2 from [2-14C]-pyruvate (TCA, right panel in D), from [U-14C]-glutamine (gluta-

minolysis, right panel in E), or from [1-14C]-glucose (PPP, right panel in F). Error bars represent standard deviation from the mean of triplicate samples. Data are

representative of three independent experiments.

(G) Overview of the experimental procedure used for assessing OT-II T cell proliferation in vivo (H).

(H) Naive OT-II T cells (CD45.1+) were CFSE labeled and transferred into C57BL/6 mice, which were immunized with OVA and treated daily with the indicated

inhibitors or vehicle controls. Splenocytes were analyzed 3 days after immunization and OT-II cell proliferation was determined by flow cytometry.

Data represent two independent experiments. See also Figure S1.
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Taken together, these results are consistent with our metabolic
flux data and indicate that global regulation of metabolic gene
transcription is involved in activation-induced T cell metabolic
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Taken together, these results are consistent with our metabolic
flux data and indicate that global regulation of metabolic gene
transcription is involved in activation-induced T cell metabolic
reprogramming.

Myc, but Not HIF1a, Is Required for Activation-Induced
T Cell Metabolic Reprogramming
With an in silico approach (Roider et al., 2009), transcription
factors possibly involved in activation-induced T cell metabolic
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Memory T cells focus on mitochondrial metabolism
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formation associated with metabolic reprogramming [58]. Indeed, mTORC2-deficient mouse
CD8+ T cells showed increased SRC and FAO, even when cultured with IL-2, indicating that
metabolic reprogramming could prevail even under conditions favoring effector T cell differen-
tiation [58]. How mTORC2 deficiency is linked to this metabolic feature is currently under
investigation [27,58].
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Figure 1. Metabolic Features of Naïve, Effector, Memory and Exhausted CD8+ T Cells in Mice. Various CD8+ T cell subsets rely on distinct metabolic
pathways for survival and function. Naïve CD8+ T cells (A) are quiescent and highly dependent on mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP
for survival and homeostasis maintenance. Effector CD8+ T cells (B) engage glycolysis and glutaminolysis to generate the building blocks required to sustain the
proliferative burst (both glycolysis and OXPHOS) and the acquisition of effector functions (glycolysis). Mitochondrial reactive oxygen species (ROS) generation is also
important for T cell activation. In addition, effector cells uptake extracellular fatty acids (FAs) and store excess ones in lipid droplets. Despite higher dependence on fatty
acid oxidation (FAO) to enhance spare respiratory capacity (SRC), CD8+ central memory T cells (Tcm) (C) use cell-intrinsic lysosomal acid lipase (LAL)-mediated lipolysis
of triacylglycerides (TAGs) to fuel FAO rather than uptaking extracellular free FAs. Intracellular TAG synthesis and storage in CD8+ Tcm cells are controlled by cell surface
aquaporin 9 (AQP9), which mediates glycerol transport. Exhausted CD8+ T cells (D) show dysregulated glycolysis and mitochondrial metabolism. In particular, they
show defective mitochondrial activity and structure, at least in part due to decreased peroxisome proliferator-activated receptor gamma coactivator 1a (PGC1a)
expression. Programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been shown to inhibit glycolysis and PD-1 also regulates
FAO and glutaminolysis.
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Figure 3. Enhancing Mitochondrial Fusion Promotes the Generation of Memory-like T Cells
(A–F and I–L) OVA peptide and IL-2-activated OT-I cells differentiated into IL-2 TE or IL-15 TM cells for 3 days in the presence of DMSO or 20 mM fusion promoter

M1 and 10 mM fission inhibitor Mdivi-1 (M1 + Mdivi-1) as shown (A) pictorially. (B) Representative spinning disk confocal images from three experiments of live

cells from OT-I PhAMmice. Mitochondria are green (GFP) and nuclei are blue (Hoechst). Scale bar, 5 mm. (C) Cells stained with MitoTracker Green and analyzed

by flow cytometry. RelativeMFI (left) from 6 experiments (*p = 0.0394, **p = 0.0019) with representative histograms (right). (D) Baseline OCR andSRC from three to

four experiments (*p = 0.0485, ***p < 0.0001), and (E) CD62L expression analyzed by flow cytometry of indicated cells. Relative MFI (left) from seven experiments

(*p = 0.0325, **p = 0.0019, ***p < 0.0001) with representative histograms (right). (F) OCR of indicated cells at baseline and in response to PMA and ionomycin

stimulation (PMA + iono), oligomycin (Oligo), FCCP, and rotenone plus antimycin A (R + A). Represents two experiments. (C–F) Shown asmean ±SEM. (I–L) A total

(legend continued on next page)
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formation associated with metabolic reprogramming [58]. Indeed, mTORC2-deficient mouse
CD8+ T cells showed increased SRC and FAO, even when cultured with IL-2, indicating that
metabolic reprogramming could prevail even under conditions favoring effector T cell differen-
tiation [58]. How mTORC2 deficiency is linked to this metabolic feature is currently under
investigation [27,58].
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Figure 1. Metabolic Features of Naïve, Effector, Memory and Exhausted CD8+ T Cells in Mice. Various CD8+ T cell subsets rely on distinct metabolic
pathways for survival and function. Naïve CD8+ T cells (A) are quiescent and highly dependent on mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP
for survival and homeostasis maintenance. Effector CD8+ T cells (B) engage glycolysis and glutaminolysis to generate the building blocks required to sustain the
proliferative burst (both glycolysis and OXPHOS) and the acquisition of effector functions (glycolysis). Mitochondrial reactive oxygen species (ROS) generation is also
important for T cell activation. In addition, effector cells uptake extracellular fatty acids (FAs) and store excess ones in lipid droplets. Despite higher dependence on fatty
acid oxidation (FAO) to enhance spare respiratory capacity (SRC), CD8+ central memory T cells (Tcm) (C) use cell-intrinsic lysosomal acid lipase (LAL)-mediated lipolysis
of triacylglycerides (TAGs) to fuel FAO rather than uptaking extracellular free FAs. Intracellular TAG synthesis and storage in CD8+ Tcm cells are controlled by cell surface
aquaporin 9 (AQP9), which mediates glycerol transport. Exhausted CD8+ T cells (D) show dysregulated glycolysis and mitochondrial metabolism. In particular, they
show defective mitochondrial activity and structure, at least in part due to decreased peroxisome proliferator-activated receptor gamma coactivator 1a (PGC1a)
expression. Programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been shown to inhibit glycolysis and PD-1 also regulates
FAO and glutaminolysis.
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Tumor-infiltrating T cells: prototype of T cell exhaustion

been described as one of the hallmarks of T cell exhaustion
(Wherry et al., 2007). While transient expression of PD-1 is
a characteristic of normal T cell activation, persistent antigen
exposure induces a sustained expression of PD-1, which char-
acterizes—and possibly drives—T cell dysfunction (Ahmadza-
deh et al., 2009; Baitsch et al., 2011; Wherry, 2011). In addition
to PD-1, dysfunctional T cells have been shown to overexpress
other inhibitory receptors, including T cell immunoglobulin and
mucin domain-3 protein (Tim-3), Lymphocyte-activation gene 3
(Lag-3), Cytotoxic T lymphocyte antigen-4 (CTLA-4), and T cell
immunoglobulin and ITIM domain (TIGIT) (Blackburn et al.,
2009; Kuchroo et al., 2014). The fraction of T cells that simulta-
neously express these receptors—and that often also exhibit a
high expression level of PD-1—increases during progressive
dysfunction, as defined by the gradual loss of effector functions
(Blackburn et al., 2008; Schreiner et al., 2016). Analysis of the
pattern of inhibitory receptor co-expression on T cells in both
chronic hepatitis B virus infection and cancer has revealed a
hierarchical expression of these receptors, dominated by the
expression of PD-1 (Bengsch et al., 2014; Thommen et al., 2015).

A second feature of exhausted T cells in chronic viral infection
is the progressive loss of effector functions, including the secre-
tion of interleukin (IL)-2, tumor necrosis factor (TNF)a, interferon
(IFN)g, and b-chemokines (Wherry et al., 2007). Several studies

have demonstrated that tumor-infiltrating CD8+ T lymphocytes
are also impaired in their production of effector cytokines
(Baitsch et al., 2011; Zippelius et al., 2004) in, among others,
melanoma (Ahmadzadeh et al., 2009), NSCLC (Thommen
et al., 2015), HNSCC (Li et al., 2016), gastric cancer (Lu et al.,
2017), and ovarian cancer (Matsuzaki et al., 2010).
Finally, exhausted T cells in chronic LCMV infection display

a particular gene expression profile that is distinct from that of
naive, effector, or memory T cells and that, in addition to changes
in inhibitory receptorexpressionandcytokineproduction, encom-
passes alterations in transcription factor expression and in path-
ways involved in chemotaxis, migration, andmetabolism (Wherry
et al., 2007). The transcriptional profile of CD8+ T cells directed
against the Melan-A/MART-1 melanoma antigen isolated from
melanoma metastases after vaccination largely overlaps with
the exhaustion signature derived fromCD8+ T cells during chronic
LCMV infection, and contains similar alterations in processes
involved in immune response, cell migration, signaling, meta-
bolism, cell cycle, and DNA repair (Baitsch et al., 2011).
Phenotypic and Transcriptional Differences between
Dysfunctional T Cells in Cancer and Chronic Viral
Infection
Based on the observation that T cells derived from human tu-
mors and chronic viral infection share a number of phenotypic,

Figure 1. Drivers of T Cell Dysfunction in Cancer
Dysfunctional T cells in cancer share core exhaustion features with dysfunctional T cells in chronic infection that are at least partially driven by chronic TCR
stimulation. The consequences of chronic TCR signaling are further modulated by a multitude of immunosuppressive signals in the TME, including inhibitory
ligands, suppressive soluble mediators, cell subsets, and metabolic factors. Strength of these different signals is determined by parameters such as the specific
mutations in the cancer cells, spatial gradients in tumor composition, and therapy-induced alterations in the TME. Collectively, the immunosuppressive signals in
the TME shape the (dys-)functional state of intratumoral T cells by influencing the expression of inhibitory receptors, changing metabolic pathways, modifying the
epigenetic state, and altering their transcription factor profiles.
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Chronic viral infection and cancer are characterized by 
antigen persistence and T cell exhaustion

IY37CH19-Wherry ARjats.cls March 30, 2019 10:52

It is also now clear that T cell exhaustion has a major role in immune dysfunction in cancer (22,
23). Indeed, tumor-specific CD8 T cells display hallmarks of T cell exhaustion and dysfunction
in mouse models (24, 25) and human cancers including, but not limited to, melanoma (26–30),
chronic myeloid leukemia (24), ovarian cancer (31), non–small cell carcinoma (32, 33), Hodgkin
lymphoma (34), and chronic lymphocytic leukemia (35, 36). Exhausted tumor-infiltrating
lymphocytes (TILs) are characterized by high expression of IRs, poor effector functions, and a
common transcriptional and epigenetic program (27–31, 33, 35, 37–44). T cell exhaustion in the
context of cancer is discussed further throughout this review.
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3 signals model to induce T cell exhaustionIY37CH19-Wherry ARjats.cls March 30, 2019 10:52
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Figure 2
Three-signal model of development of T cell exhaustion. Persistent antigen (signal 1) from virus or tumor
drives hyperactivation of T cells that eventually leads to sustained coexpression of multiple inhibitory
receptors on T cells and their ligands on antigen-presenting cells (APCs), virally infected cells, and tumors.
Inhibitory receptors provide negative costimulatory signals to T cells (signal 2) that prevent optimal T cell
effector responses and result in an inability of T cells to mount a robust immune response. In response to
persistent antigen, virally infected cells, immunoregulatory cells, APCs, and tumors contribute to a chronic
state of inflammation by producing both proinflammatory cytokines (such as IFN-α/β) and inhibitory
cytokines (such as IL-10 or TGF-β) (signal 3) that further drive exhaustion by, either directly or indirectly,
eliciting negative regulatory signals on T cells. Figure created with BioRender.

play a role. One of the earliest events known to foster T cell exhaustion during chronic viral
infections was absence of (or poor) CD4 T cell help (127). However, additional factors including
IR signaling, soluble cytokines that promote or antagonize exhaustion, and immunoregulatory
cells also contribute to the development of T cell exhaustion.Here we discuss alterations in signal
1 and signal 3; discussion of IRs and costimulation (signal 2) is in Section 4.

3.1. Antigen Load and Persistence
A key feature shared between many mouse models of chronic infections or cancer, chronic human
infections, and human cancer is the persistent exposure of T cells to antigen (60, 69, 90, 128–131).
Indeed, both high antigen load and long duration of antigen exposure contribute to more severe
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Metabolism in exhaustion

formation associated with metabolic reprogramming [58]. Indeed, mTORC2-deficient mouse
CD8+ T cells showed increased SRC and FAO, even when cultured with IL-2, indicating that
metabolic reprogramming could prevail even under conditions favoring effector T cell differen-
tiation [58]. How mTORC2 deficiency is linked to this metabolic feature is currently under
investigation [27,58].
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Figure 1. Metabolic Features of Naïve, Effector, Memory and Exhausted CD8+ T Cells in Mice. Various CD8+ T cell subsets rely on distinct metabolic
pathways for survival and function. Naïve CD8+ T cells (A) are quiescent and highly dependent on mitochondrial oxidative phosphorylation (OXPHOS) to generate ATP
for survival and homeostasis maintenance. Effector CD8+ T cells (B) engage glycolysis and glutaminolysis to generate the building blocks required to sustain the
proliferative burst (both glycolysis and OXPHOS) and the acquisition of effector functions (glycolysis). Mitochondrial reactive oxygen species (ROS) generation is also
important for T cell activation. In addition, effector cells uptake extracellular fatty acids (FAs) and store excess ones in lipid droplets. Despite higher dependence on fatty
acid oxidation (FAO) to enhance spare respiratory capacity (SRC), CD8+ central memory T cells (Tcm) (C) use cell-intrinsic lysosomal acid lipase (LAL)-mediated lipolysis
of triacylglycerides (TAGs) to fuel FAO rather than uptaking extracellular free FAs. Intracellular TAG synthesis and storage in CD8+ Tcm cells are controlled by cell surface
aquaporin 9 (AQP9), which mediates glycerol transport. Exhausted CD8+ T cells (D) show dysregulated glycolysis and mitochondrial metabolism. In particular, they
show defective mitochondrial activity and structure, at least in part due to decreased peroxisome proliferator-activated receptor gamma coactivator 1a (PGC1a)
expression. Programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been shown to inhibit glycolysis and PD-1 also regulates
FAO and glutaminolysis.
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Subsequently, cells were stimulated by the TCC or TCCþPD1
protocol. Measurement of the rate of FAO at various time
intervals by assessing 3H2O, the end product of b-oxidation from
radiolabelled fatty acids generated from endogenous lipid,
revealed a continuous increase of 3H2O in T cells stimulated
with simultaneous PD-1 ligation. In contrast, T cells stimulated
without PD-1 displayed a decrease of b-oxidation of endogenous
fatty acids, as determined by low levels of 3H2O that declined
steadily (Fig. 4d). Consistent with the increased rate of FAO,
PD-1 induced a significant elevation of the ketone body
3-hydroxybutyrate (Fig. 4a and Supplementary Fig. 3), which is
produced during FAO. Thus, PD-1 ligation leads to increase of
FAO, which coincides with upregulation of ATGL, lipolysis and
utilization of endogenous fatty acids for b-oxidation.

Substantial mitochondrial SRC on PD-1 ligation. To investigate
how cellular metabolism of CD4þ primary human T cells is
regulated during stimulation via TCR/CD3 and CD28 and to

determine the role of PD-1, we measured bioenergetic profiles.
Extracellular acidification rate (ECAR), an indicator of glycolysis,
and oxygen consumption rate (OCR), an indicator of OXPHOS,
were increased in TCC in comparison to unstimulated primary
T cells (Fig. 5a,b), indicating that activated human CD4þ T cells
use both glycolysis and OXPHOS, consistent with previous
observations in mouse CD4þ T cells13. TCCþPD1 showed lower
basal ECAR and OCR (Fig. 5a,b) but had a higher OCR/ECAR
ratio compared with TCC (Fig. 5c). These findings indicated
that in contrast to proliferating T cells, which preferentially use
glycolysis for energy production, TCCþPD1 cells are rather
metabolically quiescent and preferentially use OXPHOS than
glycolysis as indicated by the higher OCR/ECAR ratio. However,
after use of FCCP to uncouple ATP synthesis from the
electron transport chain, TCCþPD1 demonstrated substantial
mitochondrial SRC as indicated by the difference between the
maximal OCR after FCCP injection and basal OCR, which was
higher than the SRC of TCC and of naı̈ve cells (Fig. 5d,e). This was
surprising because elevated CPT1A expression and CPT1A-
mediated increased SRC are critical regulators of memory
T-cell metabolism, survival and function33. SRC is the extra
mitochondrial capacity available in a cell to produce energy under
conditions of increased work or stress and is thought to be
important for long-term cell survival34. Thus, T cells receiving
PD-1 signals have bioenergetic properties of long-lived cells.

Effects of PD-1 on TCR signaling impact on metabolism. PI3K/
Akt and MEK/Erk pathways have important roles in glucose
metabolism11,12,35. Both pathways are targets of PD-1 (refs
19,27). We examined whether inhibition of these pathways might
recapitulate the effects of PD-1 on altering the metabolic
reprogramming of activated primary T cells by inhibiting
glycolysis and promoting FAO. We used LY294002, a selective
inhibitor of PI3K, and UO126, a selective inhibitor of MEK1/2
kinases. Incubation with LY294002 prevented the decrease of
CPT1A induced by anti-CD3 and anti-CD28 (Fig. 6a). The
decrease of FAO induced on activation was also prevented,
resulting in a rate of FAO comparable to unstimulated T cells
(Fig. 6b). Incubation with UO126 had similar effects (Fig. 6a,c).
Thus inhibition of either PI3K/Akt or MEK/Erk alone, did not
fully recapitulate the effects of PD-1, which upregulated both the
expression of CPT1A and the rate of FAO. In contrast,
simultaneous inhibition of PI3K/Akt and MEK/Erk resulted in
increased abundance of CPT1A (Fig. 6a) but also elevated rate of
FAO above baseline (Fig. 6d), similar to the effects induced by
PD-1. These effects were specific because the use of vehicle
control or SB203580, a selective inhibitor of p38 MAPK, did not
affect CPT1A expression and FAO (Supplementary Fig. 4a,b).
Furthermore, blockade of PD-1 significantly restored Akt and
Erk1/2 activation and reduced FAO (Supplementary Fig. 4c,d).
Assessment of bioenergetics showed that inhibition of either
PI3K/Akt or MEK/Erk suppressed both glycolysis and OXPHOS
as determined by diminished ECAR and OCR but promoted
preferential OXPHOS utilization as determined by increased
OCR/ECAR ratio compared with cells stimulated via TCR/CD3
and CD28 (Supplementary Fig. 5). Concomitantly with the
suppression of the glycolytic phenotype, inhibition of PI3K/Akt
or MEK/Erk, and more prominently the combined inhibition of
PI3K/Akt and MEK/Erk, resulted in increased SRC (Fig. 6e).
Incubation with either LY294002 or UO126 alone did not
increase the levels of ATGL but the combination of
LY294002þUO126 induced ATGL upregulation (Fig. 6f),
suggesting that the elevated rate of FAO during simultaneous
pharmacologic inhibition of PI3K/Akt and MEK/Erk coincided
with increased lipolysis and availability of fatty acids for FAO.
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Metabolism in exhausDon

formation associated with metabolic reprogramming [58]. Indeed, mTORC2-deficient mouse
CD8+ T cells showed increased SRC and FAO, even when cultured with IL-2, indicating that
metabolic reprogramming could prevail even under conditions favoring effector T cell differen-
tiation [58]. How mTORC2 deficiency is linked to this metabolic feature is currently under
investigation [27,58].
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expression. Programmed cell death 1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) have been shown to inhibit glycolysis and PD-1 also regulates
FAO and glutaminolysis.
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Cancer cells steal glucose from T cells

these effector functions were suppressed by limited amounts of
glucose (Figure 1E). Conversely, glucose deprivation augmented
TGFb production in activated CD4+ T cells (Figure 1F), suggest-
ing that glucose deprivation can cause CD4+ T cells to switch
from immuno-supportive to immuno-suppressive states. Impor-
tantly, the CD4+ T cells isolated directly ex vivo frommelanomas
displayed similar functional attributes to the in vitro glucose-
deprived TH1 cells. For example, the percentage of CD44hi

CD25lo (non-Treg) CD4+ T cells that produced IFNg or CD40L
in the tumors was !50% lower than that in the spleen or dLN
(Figure 1G). Additionally, the expression of the TGFb latency
associated peptide (LAP), a surrogate marker for cells compe-
tent to produce TGFb, was examined on the CD4+ T cells (Fig-
ures 1H–IJ), and this showed that a greater proportion of non-
Treg CD4+ T cells expressed elevated LAP compared to the
FoxP3+ Tregs in both the tumors and dLNs (Figure 1J).

Figure 1. Tumor Microenvironment Deprives Glucose to Infiltrating CD4+ T Cells
(A) Bar graphs show the glucose concentration in blood and interstitial fluid of tumors and spleens from Braf/Pten melanoma-bearing mice.

(B and C) Glucose uptake in splenic and intratumoral CD44+/CD25lo and CD44+/CD25hi CD4+ T cells (B) or in TH1 cells cultured with or without Braf/Pten

melanoma cells (C) was determined using fluorescent 2-NBDG and measured by flow cytometry.

(D) The expression of glucose-deprived signature genes in CD4+ T cells isolated frommelanomas and draining lymph nodes (dLNs) was determined by qRT-PCR.

(E and F) TH1 CD4+ T cells derived from LCMV Armstrong-infected mice were stimulated by anti-CD3/anti-CD28 mAbs in vitro in the indicated glucose con-

centrations for 5 hr. The expression of IFNg, IL-2, and CD40L was analyzed by flow cytometry (E), and production of TGFb was determined by ELISA (F).

(G) The production of CD40L and IFNg in CD4+ T cells isolated from the dLN, spleen, or tumors in Braf/Pten mice was analyzed by flow cytometry.

(H) LAP surface expression was compared between activated FoxP3+ (Treg) and FoxP3" (non-Treg) CD4
+ T cells within melanomas using flow cytometry.

(I) Validation of LAP staining as a surrogate for TGFb secreting capability was performed by stimulating purified intratumoral LAP+ and LAP" CD44+ CD4 T+ cells

with or without anti-CD3/anti-CD28 mAbs for 16 hr and measuring the amount of TGFb in culture supernatants by ELISA.

(J) The frequency of LAP+ FoxP3+ (Treg) and FoxP3" (non-Treg) CD4
+ T cells within melanomas or dLNs was assessed using flow cytometry.

Data shown are cumulative of two (A and B, D, H, I) (n = 3–6 mice/group/experiment) and three (G and J) independent experiments (n = 3–4 mice/group/

experiment) or representative of three (C, E and F) independent experiments (n = 3–5/group). Data are expressed as mean ± SD and (C) is presented as mean ±

SEM. *p < 0.05 by unpaired Student’s t test.
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Collectively, these data demonstrate that CD4+ TILs display ge-
netic and functional features associated with glucose-depriva-
tion and suggest that competition between tumor cells and
TILs for glucose in the tumor microenvironment could contribute
to an immunosuppressive environment.

Increased Rates of Aerobic Glycolysis in Melanoma
Cells Suppress CD4+ T Cell-Mediated
Immunosurveillance
Increased rates of aerobic glycolysis and expression of glyco-
lytic enzymes (e.g., hexokinase 2 [Hk2]) are common hallmarks
of cancer cells (Hanahan and Weinberg, 2011), and this may
lead to glucose-deprivation and T cell dysfunction in tumors as
suggested by the data above. To investigate this hypothesis
further, we analyzed the expression of effector T cell genes
(e.g., Ifng and Cd40lg) and markers of glycolysis (e.g., Hk2)
mRNA within the tumors of 384 melanoma patients (data ob-
tained from The Cancer Genome Atlas [TCGA]) (Cerami et al.,
2012; Gao et al., 2013). Interestingly, this showed that the
amount of Cd40lg and Ifng mRNA inversely correlated with
Hk2 mRNA (Figure S2A). To more directly test if the glycolytic
rates of tumor cells affect tumor immunosurveillance by CD4+
T cells, we established stable clones of the Braf/Pten melanoma
cell line (YUMM1.7) that expressed either a control vector or one
overexpressing HK2 (HK2-OE). As expected, HK2-OE tumor
cells had higher rates of aerobic glycolysis than the control cells
based on extracellular acidification rates (ECAR) using the Sea-
horse Extracellular Flux Analyzer (Figure S2B) and HK2-OE tu-
mor cells more efficiently suppressed glucose uptake of TH1
CD4+ T cells in the co-culture assay (Figure S2C). Then we en-
grafted control and HK2-OE melanoma cell lines into the left
and right flanks, respectively, of wild-type C57BL/6 mice. Two
weeks later, the production of CD40L and IFNg by CD4+ TILs re-
stimulated directly ex vivo was assessed and compared to CD4+

T cells isolated from the control melanomas, those isolated from
HK2-OE tumors had lower production of CD40L and IFNg (Fig-
ures 2A and 2B and S2D). This result demonstrated that T cell
effector functions could be affected by the rates of tumor cell
aerobic glycolysis. Next, we compared the growth rates of con-
trol and HK2-OE melanoma cell lines engrafted into the left and
right flanks, respectively, of Rag1-KO mice that were either re-
constituted with CD4+ T cells or not. In accord with higher rates
of aerobic glycolysis, the HK2-OE melanomas grew faster
compared to the control tumors in both groups of mice (Fig-
ure 2C). However, the presence of CD4+ T cells potently sup-
pressed the growth of control melanoma cells, but had little
effect on the HK2-OE melanoma cells (Figures 2C–2E). Taken
together, these results support the intriguing model that tumor
cells with increased rates of aerobic glycolysis are better able
to evade anti-tumor CD4+ T cell responses.

Glucose Deprivation Suppresses TCR-Dependent
Activation of Ca2+ and NFAT Signaling
To better understand how glucose deprivation alters TH1 cell
functions, we examined how glycolysis affects TCR signaling
after TCR stimulation using several approaches. First, we
observed that the induction of the immediate early gene Nur77
(as measured using a Nur77-eGFP reporter that reads out TCR
signaling in a Ca2+-dependent manner; Moran et al., 2011) was
suppressed in glucose-poor conditions or in the presence of
2-DG (Figure 3A). In contrast, the amount of phosphorylated
ERK1/2 (pERK1/2) or AKT (pAKTS473 and pAKTT308) was
minimally affected following activation of TH1 CD4 T cells in
glucose-deprived conditions (Figure S3). The defect in Nur77
induction prompted us to more closely monitor cytoplasmic
calcium flux using the ratiometric Ca2+-sensitive dyes (Fluo-4
and Fura-Red) and flow cytometry, and this revealed that
glucose deprivation profoundly repressed TCR-induced Ca2+

Figure 2. HK2 Overexpression in Melanoma
Cells Suppresses CD4+ T Cell-Mediated
Anti-tumor Responses
(A and B) Control (Ctrl) or HK2-OE Braf/Pten tu-

mors were engrafted into the right and left flanks of

C57BL/6 mice. Fourteen days later, the CD4+ TILs

were isolated, stimulated in vitro by anti-CD3/anti-

CD28 mAbs for 5 hr and analyzed for CD40L and

IFNg expression by flow cytometry. Left: percent-

age of CD40L+ (A) or IFNg+ (B); right: mean fluo-

rescence intensity (MFI) of the indicated proteins.

(C–E) Ctrl or HK2-OE Braf/Pten tumors were en-

grafted into the right and left flanks of Rag1-KO

mice mouse that were either injected with PBS or

reconstituted with CD4+ T cells and 14 days later

the weight (C and D) and size (E) of tumors was

assessed. (C and D) Graphs show tumor weights of

the contralateral pairs of ctrl and HK2-OE mela-

nomas collected from same mouse expressed as

actual weights (C) or as a ratio (D).

Data shown are cumulative of three (A and B)

independent experiments (n = 3–4 mice/group) or

four (C and D) independent experiments (n = 2–4

mice/group). Data are expressed as mean ± SD

and *p < 0.05 by unpaired Student’s t test.
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Metabolic stress in the tumor microenvironment and its 
impact on antitumor immunity

In agreement with findings from murine tumour 
models, the results of several clinical studies revealed 
that aerobic glycolytic activity in human tumours is 
negatively associated with host antitumour immune 
responses and therapeutic outcomes of anticancer 
immunotherapy. For example, human tumours refrac-
tory to adoptive T cell transfer (ACT) immunother-
apy have elevated levels of aerobic glycolytic activity, 
and glycolytic tumours have lowered levels of T cell 
tumour infiltration and cytotoxicity compared with 
less- glycolytic tumours33. In patients with melanoma, 
tumoural levels of LDHA and lactate negatively correlate 

with markers of T cell activity and overall survival34; 
clinical data from 311 patients demonstrated that serum 
LDH levels >1,000 international units (IU)/l predicted 
terminal stage, metastatic disease35. Consistent with 
these findings, LDHA- mediated lactic acid production 
suppresses IFNγ expression in both tumour- infiltrating 
T cells and NK cells, thereby promoting tumour growth 
and immune evasion in mouse models34. Similarly, a 
negative correlation between intratumoural lactate 
concentration and overall survival in patients with cer-
vical cancer has been reported36. Together, these find-
ings suggest that glycolytic activity not only provides 
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Fig. 1 | Metabolic stress in the tumour microenvironment and its impact on antitumour immunity. Metabolic 
competition and metabolite- mediated communication occur between tumour cells and various tumour- infiltrating 
immune cells. Tumour cells preferentially produce energy by metabolizing glucose via aerobic glycolysis, with a low rate of 
oxidative phosphorylation (the Warburg effect), decreasing glucose availability and increasing the abundance of lactic 
acid in the tumour microenvironment (TME). The glucose- deprived, lactic acid- enriched TME impairs T cell function and 
thus antitumour immune responses and polarizes tumour- associated macrophages (TAMs) towards a generally pro- 
tumour, M2-like phenotype. Competition for amino acids, including arginine and tryptophan, between T cells and tumour 
cells — and/or other cells of the TME, such as myeloid- derived suppressor cells (MDSCs) — can also suppress antitumour 
immunity. Glutamine and glutamate stimulate T cell- mediated immune responses or exacerbate T cell dysfunction in a 
context- dependent manner (indicated by dotted lines). Kynurenine produced through the catabolism of tryptophan by 
indoleamine 2,3-dioxygenase (IDO) in tumour cells and TAMs can further impede T cell activation and promote the 
development of immunosuppressive regulatory T (Treg) cells. The availability and usage of fatty acids in T cells within the 
TME are also influenced by competition with tumour cells. Notably , a high rate of cholesterol esterification in the tumour 
can impair T cell responses and, therefore, disruption of cholesterol esterification in order to increase the concentration of 
cholesterol in the plasma membranes of CD8+ T cells might increase their proliferation and improve their effector 
function. The generation of other metabolites, including adenosine and prostaglandin E2 (PGE2), by tumour cells and other 
immunomodulatory cells is also implicated in the suppression of T cell- mediated antitumour responses. Metabolites in red 
boxes are reported or hypothesized to be scarce in the TME. ARG1, arginase 1; FAO, fatty acid β- oxidation; GLUT, glucose 
transporter ; MCT4, monocarboxylate transporter 4.
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Adapted from Rosenberg, NEJM, 2004

3. Immunomodulating agents
- Ipilimumab (a-CTLA-4)
- Nivolumab, Pembrolizumab (a-PD-1)
- Atezolizumab, Avelumab (a-PD-L1)

1. Vaccines
- Provenge
- Neo-antigens
- Tumor associated-

antigens

2. Adoptive 
cell transfer
- Kymriah
- Yescarta

Cancer immunotherapy strategies



Immunotherapy is enhanced by nutrient supplementation 
through metabolically engineered bacteria

Canale et al., 2021 Nature

T cell infiltration

Arginine supply synergizes with checkpoint blockade immunotherapy

Nature | Vol 598 | 28 October 2021 | 663

confirmed by the quantification of tumour-infiltrating CD4+ and 
CD8+ T cells from dissociated tumours using flow cytometry (Fig. 3b, 
Extended Data Fig. 1d). L-Arg bacteria also decreased the percentage 
of FOXP3+ regulatory T cells in tumours (Fig 3c).

We next investigated whether colonization of MC38 tumours with L-
Arg bacteria synergizes with anti-PD-L1-blockade therapy. Mice bearing 
MC38 tumours received four intratumoural injections of ECN or L-Arg 
bacteria either alone or combined with anti-PD-L1 antibodies. L-Arg 
bacteria combined with anti-PD-L1 therapy synergistically reduced 

tumour growth, and tumours in 74% of mice treated with the combined 
therapy were completely eradicated (Fig. 3d, e). By contrast, com-
plete tumour rejection was observed for only 44% and 39% of mice that 
received anti-PD-L1 antibodies alone or combined with non-engineered 
ECN, respectively (Fig. 3d, e). Thus, the approximately 30% increase in 
the number of mice that rejected tumours could be attributed to the 
L-arginine-producing capacity of the engineered bacteria. Adminis-
tration of ECN alone did not influence MC38 tumour growth when 
compared with a PBS control (Extended Data Fig. 2). Together, these 
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Fig. 1 | L-Arginine synergizes with PD-L1 blockade to promote MC38 tumour 
rejection. Mice with established MC38 tumours received daily oral gavage of 
water or L-arginine (2 g per kg body weight) combined with bi-weekly 
intraperitoneal administration of PBS or anti-PD-L1 antibody (anti-PD-L1) 
(4 injections in total) as indicated. a, MC38 tumour growth curves. Arrows 

indicate time points of treatments. Values represent mean tumour 
volume ± s.e.m. Numbers of mice are indicated in the graph. Data are from two 
independent experiments. P value is shown in graph and was determined by 
two-way analysis of variance (ANOVA). b, Tumour growth curves of individual 
mice. c, Survival analysis of mice.
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Fig. 2 | Metabolically engineered bacteria produce L-arginine and colonize 
tumours. A metabolically engineered strain of ECN was generated to produce 
high levels of L-arginine in tumours. a, Schematic of L-Arg bacteria, showing the 
modified region of the genome. b, L-Arg bacteria or ECN were pre-induced in 
the presence of 5 mM NH4Cl and then incubated at 37 °C. Arginine production 
was measured by liquid chromatography with mass spectrometry (LC–MS/MS). 
n = 2. c, Pre-induced ECN and L-Arg bacteria were grown for 3 h and their total 
proteome was analysed by LC–MS/MS. The volcano plot shows the results of a 
differential abundance analysis (two-tailed Welch’s t-test) between ECN and 
L-Arg bacteria. Red and blue dots represent proteins whose abundances 
differed significantly between the two strains (P < 0.01, log2|fold change| > 4). 
n = 4 biologically independent samples. d, Illustration of the L-arginine 
biosynthesis pathway. The colour code indicates the log2/(fold change) as 
determined by LC–MS/MS. Arrows between enzymes indicate the direction of 
the reaction according to the KEGG database. e, Five million CFU of L-Arg 
bacteria or ECN were injected into MC38 tumours. The tumours were collected 
and homogenized after 24, 72 or 120 h and bacterial abundance was measured 
by CFU assay. Lines represent mean CFU per g, n = 2. f, L-Arg bacteria or ECN 
were injected into MC38 tumours. Tumours were collected and homogenized 
after 24 h and arginine levels were measured by LC–MS/MS. n = 2 for ECN, n = 3 
for L-Arg bacteria. Bars represent mean ± s.e.m.; data are representative from 
two experiments (b, e, f).
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results demonstrate that L-Arg bacteria improve checkpoint inhibitor-
based immunotherapy.

To analyse whether the therapeutic effect was mediated by T cells, 
we repeated the experiments in Cd3e–/– mice, which lack all T cells, 
but exhibit organized lymphoid organ structures13. Following intratu-
moural injection of ECN and L-Arg bacteria, MC38 tumours in Cd3e–/– 
mice were colonized to a similar extent to tumours of wild-type mice 
(Extended Data Fig. 3a). However, treatment of Cd3e–/– mice with L-Arg 
bacteria combined with PD-L1 antibodies did not reduce tumour growth 
(Extended Data Fig. 3b, c), indicating that the anti-tumour effect of L-Arg 
bacteria was dependent on T cells. Next, we analysed the phenotype 
of CD8 T cells isolated from MC38 tumours of wild-type mice ten days 
after initiating different treatments. The combined treatment with 
L-Arg bacteria and anti-PD-L1 antibodies increased the percentage of 
tumour-infiltrating T cells that produce the pro-inflammatory cytokine 
TNF (Fig. 3f) and decreased the percentage of T cells co-expressing 
the inhibitory receptors PD-1 and LAG-3 (Fig. 3g), indicating sustained 
effector T cell functions.

When mice in which tumours regressed completely were re-chal-
lenged after 90 days with a subcutaneous injection of MC38 cells, 
tumours did not grow, indicating that long-term immunological anti-
tumour memory had been formed (Fig. 4a). The anti-tumour memory 
was specific to MC38 cells, as a subsequent challenge with a different 
tumour cell line (B16) resulted in similar growth kinetics as in naive 
control mice (Fig. 4b). We then isolated CD8+ and CD4+ memory T cells 
from mice that received different combinatorial treatments 100 days 
after they rejected MC38 tumours. Then, we transferred 5 × 105 total 
memory T cells into different mice with established MC38 tumours 

(Fig 4c). Memory T cells from mice that rejected tumours in response 
to L-Arg bacteria and anti-PD-L1 exhibited superior anti-tumour activity 
in recipient mice to T cells from mice that received ECN and anti-PD-
L1, confirming that L-Arg bacteria enhance the formation of tumour-
specific T cell memory (Fig. 4c).

While intratumoural injection of bacteria is suitable for accessible 
tumours, systemic administration would enable the colonization of 
non-accessible tumours. To evaluate intravenous administration of 
engineered bacteria as a potential therapeutic approach, we injected 
increasing amounts of bacteria into mice bearing MC38 tumours of 
different size. Small tumours were not consistently colonized (data not 
shown) but tumours with a volume of at least 100 mm3 were efficiently 
colonized long-term upon intravenous administration of 5 × 107 colony-
forming units (CFU) of ECN or L-Arg bacteria (Fig. 4d). Other organs 
contained no detectable bacteria, indicating that ECN and L-Arg bac-
teria specifically colonized tumours (Fig. 4d). Whereas intratumoural 
injections of bacteria were well tolerated, intravenous injections caused 
a reversible reduction in body weight (Extended Data Fig. 4a, b).

We tested the therapeutic efficacy of intravenously administered 
bacteria in combination with anti-PD-L1 therapy in mice bearing rela-
tively large tumours (at least 100 mm3). Under these conditions, anti-
PD-L1 antibodies reduced tumour growth but did not cause complete 
rejections of tumours (Fig. 4e, f), probably owing to the initial tumour 
size being approximately twice as large compared with previous experi-
ments. Treatment with a single intravenous injection of L-Arg bacte-
ria combined with anti-PD-L1 therapy reduced tumour growth, and 
40% of mice showed complete rejection of tumours. Together, these 
results show that intravenously administered L-Arg bacteria specifically 
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Fig. 3 | L-Arg bacteria synergize with PD-L1 blockade to promote MC38 
tumour rejection. a, Haematoxylin and eosin (H&E) staining and CD3 
immunohistochemistry of control MC38 tumours and tumours colonized with 
L-Arg bacteria or ECN for 72 h. Arrows indicate CD3+ T cells. Scale bars, 20 µm. 
Images are representative of two experiments. b, L-Arg bacteria or ECN were 
injected into MC38 tumours and tumour immune infiltrates were analysed by 
flow cytometry after 24 h. The gating strategy is shown in Extended Data 
Fig. 1d. n = 8 for ECN, n = 11 for L-Arg bacteria, from three experiments. 
c, Tumours were treated as in b, and tumour immune infiltrates were analysed 
for the frequency of FOXP3+ regulatory T cells. n = 6 for no bacteria and ECN 
controls, n = 4 for L-Arg bacteria. d, Mice with established MC38 tumours were 
treated as indicated. Arrows indicate time points of treatments. Left, mean 

MC38 tumour growth curves ± s.e.m from two independent experiments. 
Right, survival curves of mice; number of survivors/total number of mice is 
indicated. e, Growth curves of tumours from individual mice. i.t., 
intratumoural injection. f, g, MC38 tumour-bearing mice were treated as 
indicated. Ten days later, T cells were isolated from tumours and either 
stimulated with PMA and ionomycin to analyse the percentage of 
TNF-producing CD8+ T cells by flow cytometry (f) or left unstimulated to 
analyse PD-1 and LAG-3 expression (g). Data from two independent 
experiments. P values are shown in graphs and were determined using a 
two-tailed t-test (b, c, f, g), two-way ANOVA (d, left) or two-sided Mantel–Cox 
log-rank test (d, right). Number of mice are indicated in the graph (d–g). Bars 
represent mean ± s.e.m.
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results demonstrate that L-Arg bacteria improve checkpoint inhibitor-
based immunotherapy.

To analyse whether the therapeutic effect was mediated by T cells, 
we repeated the experiments in Cd3e–/– mice, which lack all T cells, 
but exhibit organized lymphoid organ structures13. Following intratu-
moural injection of ECN and L-Arg bacteria, MC38 tumours in Cd3e–/– 
mice were colonized to a similar extent to tumours of wild-type mice 
(Extended Data Fig. 3a). However, treatment of Cd3e–/– mice with L-Arg 
bacteria combined with PD-L1 antibodies did not reduce tumour growth 
(Extended Data Fig. 3b, c), indicating that the anti-tumour effect of L-Arg 
bacteria was dependent on T cells. Next, we analysed the phenotype 
of CD8 T cells isolated from MC38 tumours of wild-type mice ten days 
after initiating different treatments. The combined treatment with 
L-Arg bacteria and anti-PD-L1 antibodies increased the percentage of 
tumour-infiltrating T cells that produce the pro-inflammatory cytokine 
TNF (Fig. 3f) and decreased the percentage of T cells co-expressing 
the inhibitory receptors PD-1 and LAG-3 (Fig. 3g), indicating sustained 
effector T cell functions.

When mice in which tumours regressed completely were re-chal-
lenged after 90 days with a subcutaneous injection of MC38 cells, 
tumours did not grow, indicating that long-term immunological anti-
tumour memory had been formed (Fig. 4a). The anti-tumour memory 
was specific to MC38 cells, as a subsequent challenge with a different 
tumour cell line (B16) resulted in similar growth kinetics as in naive 
control mice (Fig. 4b). We then isolated CD8+ and CD4+ memory T cells 
from mice that received different combinatorial treatments 100 days 
after they rejected MC38 tumours. Then, we transferred 5 × 105 total 
memory T cells into different mice with established MC38 tumours 

(Fig 4c). Memory T cells from mice that rejected tumours in response 
to L-Arg bacteria and anti-PD-L1 exhibited superior anti-tumour activity 
in recipient mice to T cells from mice that received ECN and anti-PD-
L1, confirming that L-Arg bacteria enhance the formation of tumour-
specific T cell memory (Fig. 4c).

While intratumoural injection of bacteria is suitable for accessible 
tumours, systemic administration would enable the colonization of 
non-accessible tumours. To evaluate intravenous administration of 
engineered bacteria as a potential therapeutic approach, we injected 
increasing amounts of bacteria into mice bearing MC38 tumours of 
different size. Small tumours were not consistently colonized (data not 
shown) but tumours with a volume of at least 100 mm3 were efficiently 
colonized long-term upon intravenous administration of 5 × 107 colony-
forming units (CFU) of ECN or L-Arg bacteria (Fig. 4d). Other organs 
contained no detectable bacteria, indicating that ECN and L-Arg bac-
teria specifically colonized tumours (Fig. 4d). Whereas intratumoural 
injections of bacteria were well tolerated, intravenous injections caused 
a reversible reduction in body weight (Extended Data Fig. 4a, b).

We tested the therapeutic efficacy of intravenously administered 
bacteria in combination with anti-PD-L1 therapy in mice bearing rela-
tively large tumours (at least 100 mm3). Under these conditions, anti-
PD-L1 antibodies reduced tumour growth but did not cause complete 
rejections of tumours (Fig. 4e, f), probably owing to the initial tumour 
size being approximately twice as large compared with previous experi-
ments. Treatment with a single intravenous injection of L-Arg bacte-
ria combined with anti-PD-L1 therapy reduced tumour growth, and 
40% of mice showed complete rejection of tumours. Together, these 
results show that intravenously administered L-Arg bacteria specifically 
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Fig. 3 | L-Arg bacteria synergize with PD-L1 blockade to promote MC38 
tumour rejection. a, Haematoxylin and eosin (H&E) staining and CD3 
immunohistochemistry of control MC38 tumours and tumours colonized with 
L-Arg bacteria or ECN for 72 h. Arrows indicate CD3+ T cells. Scale bars, 20 µm. 
Images are representative of two experiments. b, L-Arg bacteria or ECN were 
injected into MC38 tumours and tumour immune infiltrates were analysed by 
flow cytometry after 24 h. The gating strategy is shown in Extended Data 
Fig. 1d. n = 8 for ECN, n = 11 for L-Arg bacteria, from three experiments. 
c, Tumours were treated as in b, and tumour immune infiltrates were analysed 
for the frequency of FOXP3+ regulatory T cells. n = 6 for no bacteria and ECN 
controls, n = 4 for L-Arg bacteria. d, Mice with established MC38 tumours were 
treated as indicated. Arrows indicate time points of treatments. Left, mean 

MC38 tumour growth curves ± s.e.m from two independent experiments. 
Right, survival curves of mice; number of survivors/total number of mice is 
indicated. e, Growth curves of tumours from individual mice. i.t., 
intratumoural injection. f, g, MC38 tumour-bearing mice were treated as 
indicated. Ten days later, T cells were isolated from tumours and either 
stimulated with PMA and ionomycin to analyse the percentage of 
TNF-producing CD8+ T cells by flow cytometry (f) or left unstimulated to 
analyse PD-1 and LAG-3 expression (g). Data from two independent 
experiments. P values are shown in graphs and were determined using a 
two-tailed t-test (b, c, f, g), two-way ANOVA (d, left) or two-sided Mantel–Cox 
log-rank test (d, right). Number of mice are indicated in the graph (d–g). Bars 
represent mean ± s.e.m.



Tumor infiltrating lymphocytes have defective mitochondria 
Enhancing mitochondrial biogenesis allows T cells to maintain anti-tumor function

Dumauthioz, Wenes, Romero et al., Cell.Mol.Immunol. 2020

Loss of Mitochondrial Function Is Specific T Cell
Responses in the Tumor Microenvironment
We next wanted to determine whether this mitochondrial
dysfunction was specific to the anti-tumor response or if it
occurred in other types of robust effector responses. To do
this, we utilized an adoptive transfer system of naive, congeni-

cally mismatched ovalbumin (OVA)-specific TCR transgenic
(OT-I) T cells into mice bearing OVA-expressing B16 (B16OVA) tu-
mors or mice infected with OVA-expressing Vaccinia virus
(VVOVA) for 6 days. This experiment was designed to compare
the chronic activation seen in cancer to a robust acute in vivo
response in which antigen is effectively cleared (Pollizzi et al.,

A B

C
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E

Figure 1. Tumor-Infiltrating CD8+ T Cells Display Suppressed Mitochondrial Function and Mass
(A) Representative flow cytogram of nondraining (ndLN), draining (dLN) lymph node, or tumor-infiltrating lymphocyte (TIL) preparations from C57BL/6 mice

inoculated with B16 melanoma cells 12 days prior, gated on CD8 or CD4 as indicated.

(B) Tabulated flow cytometric data from CD8+ T cells isolated from mice bearing the indicated tumor types. Each circle represents an individual animal.

(C) Transmission electron microscopy of activated or tumor-infiltrating CD8+ T cells.

(D) MitoTracker FM staining of CD8+ T cells from peripheral blood lymphocyte (PBL) or TIL of HNSCC patients.

(E) Oxygen consumption rate (OCR) trace (left) and metabolic analysis panels (middle, right) from CD8+ T cells isolated from the indicated sites from B16-bearing

animals. T cells activated 24 hr with anti-CD3/anti-CD28 (Teff) are included as a control. Spare respiratory capacity (SRC) is calculated as the difference between

initial, basal OCR values, and the maximal OCR values achieved after FCCP uncoupling. Data represent the mean or are representative of 3–5 independent

experiments. *p < 0.05, **p < 0.01, ***p < 0.001 by unpaired t test. Error bars indicate SEM. See also Figure S1.

376 Immunity 45, 374–388, August 16, 2016

Scharping et al., Immunity 2016

between the SCR and PGC-1α overexpression groups in terms of
IFNγ (Fig. 3i), TNFα, granzyme B, and IL-2 production (data not
shown). Collectively, our findings demonstrate that higher PGC-1α
expression in OT-1 cells increases mitochondrial respiration and
confers a metabolic advantage, resulting in enhanced in vivo
persistence and accumulation at the tumor site.

Enforced PGC-1α expression in T cells boosts antitumor immunity
Exhausted T cells can be reinvigorated by αPD-1 blockade, leading
to improved T cell functionality and antitumor response in a
considerable proportion of cancer patients.27 Given the metabolic
advantages conferred by PGC-1α expression, we then tested the
therapeutic benefit of combining ACT of PGC-1α-engineered CD8
T cells with PD-1 blockade. To this end, 6 days post B16-OVA
tumor engraftment, mice received PGC-1α or SCR-transduced OT-
1 T cells followed by OVA/CpG vaccination and αPD-1 treatment
(Fig. 4a). Importantly, PGC-1α-overexpressing CD8 T cells sig-
nificantly delayed the tumor growth compared to SCR when
treated with isotype control (Fig. 4b, c). Nevertheless, OT-1 T cells
overexpressing PGC-1α only tended to further improve tumor
control when combined with αPD-1 compared to SCR (Fig. 4b, c).

In addition, we did observe certain tumor controls with αPD-1
treatment alone in our model with both T cell populations
compared to their isotype control (Fig. 4b, c). Consistently, we
observed higher proportions (Fig. 4d) and absolute numbers
(Fig. 4e) of OT-1 T cells overexpressing PGC-1α present at the
tumor site, which tended to be further potentiated when
combined with αPD-1 treatment. Our results demonstrate that
enforced PGC-1α expression in CD8 T cells could boost antitumor
immunity, but fails to display a significant synergy with αPD-1
treatment.

TILs overexpressing PGC-1α show better recall capacity and
differentiate into memory T cells with enhanced metabolic fitness
To further characterize whether the enhanced metabolic fitness
upon PGC-1α overexpression could be maintained over time, PGC-
1α- or SCR-transduced OT-1 T cells were transferred into tumor-
bearing mice and expanded upon OVA/CpG vaccination (Fig. 5a).
Confirming our previous experiments, ACT of T cells overexpres-
sing PGC-1α led to better tumor control than its SCR counterpart
(Fig. 5b). Additionally, PGC-1α- or SCR-transduced TILs were then
recovered from the tumors (day 22), isolated as highly purified
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between the SCR and PGC-1α overexpression groups in terms of
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(Fig. 4e) of OT-1 T cells overexpressing PGC-1α present at the
tumor site, which tended to be further potentiated when
combined with αPD-1 treatment. Our results demonstrate that
enforced PGC-1α expression in CD8 T cells could boost antitumor
immunity, but fails to display a significant synergy with αPD-1
treatment.

TILs overexpressing PGC-1α show better recall capacity and
differentiate into memory T cells with enhanced metabolic fitness
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1α- or SCR-transduced OT-1 T cells were transferred into tumor-
bearing mice and expanded upon OVA/CpG vaccination (Fig. 5a).
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Metabolic reprogramming of terminally exhausted CD8+ 
T cells by IL-10 enhances anti-tumor immunity ARTICLES NATURE IMMUNOLOGY

(IPA) of the transcriptional differences between IL-10–Fc and PBS 
control groups revealed strong enrichment of gene signatures and 
pathways associated with T cell OXPHOS and effector function 
(Fig. 6d,e and Extended Data Fig. 9c,d).

To further characterize the metabolic regulation effect of 
IL-10–Fc in vivo, we analyzed the mitochondrial profiles of CD8+ 
TILs. In agreement with the RNA-seq data, we found IL-10–
Fc treatment upregulated the levels of mitochondrial reactive  
oxygen species (ROS) in the PD-1+TIM-3+CD8+ TILs, indicating 
enhanced mitochondrial respiration in vivo (Fig. 6f). To directly 
measure the metabolic profile of sorted CD8+ TILs, we were  
able to isolate PD-1+TIM-3+CD8+ TILs of a high enough count  
from YUMM1.7-OVA tumors. Consistent with the RNA-seq data 
and in vitro results, IL-10–Fc treatment markedly increased the 
basal OCR level of the PD-1+TIM-3+CD8+ TILs (Fig. 6g). These 

results indicated that terminally exhausted CD8+ TILs under-
went metabolic reprograming toward OXPHOS, remained highly 
cytotoxic and maintained effector function following exposure to 
IL-10–Fc.

IL-10–Fc promotes OXPHOS in an MPC-dependent manner. We 
next used several pathway-specific inhibitors to probe the molecu-
lar basis of metabolic regulation of T cells by IL-10–Fc (Fig. 7a–c). 
Surprisingly, the enhanced OXPHOS was not a result of increased 
activity of fatty acid oxidation (FAO) or glutaminolysis, as the 
treatment with FAO inhibitor etomoxir (ETO) and glutaminase 
inhibitor bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl 
sulfide (BPTES) did not impair the IL-10–Fc-induced elevation  
of OXPHOS or CD8+ T cell proliferation. However, inhibiting  
glycolysis with 2-deoxy-d-glucose (2-DG) or blocking pyruvate 
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were inoculated subcutaneously with B16F10 melanoma cells (5!×!105), YUMM1.7-OVA melanoma cells (1!×!106) or MC38-HER2 colon adenocarcinoma 
cells (1!×!106) and received i.v. adoptive cell transfers of activated Thy1.1+ PMEL CD8+ T cells (5!×!106), OT-I CD8+ T cells (5!×!106) or HER2 CAR T cells 
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transportation by inhibiting MPC with UK5099 completely abro-
gated the effect of IL-10–Fc. Given that MPC plays a central role 
in importing cytosolic pyruvate into the mitochondrial matrix37, 
our results suggest IL-10–Fc-induced metabolic regulation might 
rely on pyruvate generated from glycolysis. To further examine 
this postulate, we crossed the Mpc1-floxed mice (Mpc1fl/fl)38,39 with 
Cd4cre × OT-I transgenic mice to obtain the MPC1-deficient OT-I 
mice, in which Mpc1 gene was ablated in OT-I T cells. Compared with 
wild-type (WT) OT-I CD8+ T cells, MPC1-knockout (MPC1-KO) 
OT-I CD8+ T cells failed to respond to IL-10–Fc for promot-
ing OXPHOS or cell expansion (Fig. 7d,e). In addition, the mito-
chondrial biomass, membrane potential and ROS level of the WT,  
but not MPC1-KO, PD-1+TIM-3+CD8+ OT-I TILs in the 
B16F10-OVA tumors were increased upon IL-10–Fc treatment 
(Extended Data Fig. 10a–c), indicating that IL-10–Fc enhanced 

the mitochondrial function of terminally exhausted CD8+ TILs 
in a pyruvate/MPC-dependent manner. Interestingly, we found 
the IL-10–Fc treatment showed minimum effect on either pro-
tein expression or RNA transcription level of MPC1 in CD8+ 
T cells (Extended Data Fig. 10d,e). Indeed, in restimulated CD8+ 
T cells IL-10–Fc treatment resulted in activation of STAT3 signal-
ing (Extended Data Fig. 10f), which may interact with ETC com-
plexes in the mitochondria and boost ETC activities for enhanced 
OXPHOS40. Altogether, IL-10–Fc promoted OXPHOS and mito-
chondrial function in T cells in an MPC-dependent manner.

Metabolic reprogramming is essential for T cell reinvigoration. 
It is worth noting that the effect of IL-10–Fc in enhancing prolif-
eration and cytotoxicity (represented by granzyme B production) of 
the PD-1+TIM-3+ CD8+ T cells was abrogated by the treatment of 
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oligomycin, an OXPHOS pan inhibitor41 (Fig. 7c,f), suggesting the 
induced metabolic reprogramming was necessary for reinvigorating 
terminally exhausted T cells by IL-10–Fc. Directly feeding WT OT-I 
CD8+ T cells, but not MPC1-KO OT-I CD8+ T cells, with sodium 

pyruvate as an alternative approach of metabolic reprogramming 
to the IL-10–Fc treatment similarly promoted the proliferation 
of PD-1+TIM-3+CD8+ T cells upon restimulation by dimerized 
anti-CD3 antibody (Fig. 7g,h), providing additional evidence that 
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oligomycin, an OXPHOS pan inhibitor41 (Fig. 7c,f), suggesting the 
induced metabolic reprogramming was necessary for reinvigorating 
terminally exhausted T cells by IL-10–Fc. Directly feeding WT OT-I 
CD8+ T cells, but not MPC1-KO OT-I CD8+ T cells, with sodium 

pyruvate as an alternative approach of metabolic reprogramming 
to the IL-10–Fc treatment similarly promoted the proliferation 
of PD-1+TIM-3+CD8+ T cells upon restimulation by dimerized 
anti-CD3 antibody (Fig. 7g,h), providing additional evidence that 
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A T cell memory phenotype is a good prognostic factor for 
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Reductive carboxylation instructs effector T cell differentiation
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By identifying the metabolic metro map of our immune cells 
will help to understand better their functions
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Most immunologists have a distant memory of learning 
metabolic pathways as undergraduates. Many of these 
proto-immunologists saw these pathways as scientifically 
interesting but unlikely to impinge on their own grow-
ing research interests into the complexity of the immune 
response. Equally, those scientists who became immun-
ologists later were largely unaware of how metabolic path-
ways might be of direct relevance to their research, unless 
they had a particular interest in the role of immune cells 
in obesity or in metabolic diseases, such as type 2 dia-
betes. Of course there was a minority of immun ologists 
who were considering metabolic processes in the func-
tioning of immune cells, with early studies from more 
than 30 years ago describing the requirement of certain 
metabolites for macrophage, neutrophil and T cell func-
tion1–4. These studies largely focused on energy pro-
duction and biosynthesis, as activated macrophages or 
rapidly dividing T cells have huge metabolic demands. 
There was also a major interest in mechanistic target of 
rapamycin (mTOR), which is a central metabolic regula-
tor of immunity5, and AMP kinase. mTOR is the catalytic 
subunit of two distinct complexes — mTOR complex 1 
(mTORC1) and (mTORC2) — that can sense amino acids 
and growth factors and promote mRNA translation and 
lipid synthesis to support cell growth; beyond this, mTOR 
signalling regulates numerous events that are crucial for 
T cell and monocyte differentiation6. AMP kinase (which 
is activated during nutrient deprivation) promotes catabo-
lism (for example, of fatty acids) and also inhibits mTOR 
 activity, thereby limiting immune cell activation7.

What we have seen in the past five years or so is 
something of a rediscovery of metabolism by immun-
ologists and the emergence of what is now termed the 

field of immunometabolism. Why did this happen? 
Technological advances have helped tremendously; 
highly sensitive metabolomic approaches allow us to 
define the alterations in metabolites that occur dur-
ing immune cell activation and show how metabolites 
are directly linked to immune cell effector functions. 
Immunology itself as a science has advanced hugely in 
the past 30 years. Notable advances include the discovery 
of whole new immune receptor systems (most notably the 
pattern recognition receptors (PRRs)), the description 
of many cytokines and immune cell types, and a deeper 
understanding of the development and molecular regu-
lation of these immune cells. Furthermore, we now have 
elaborate tools that facilitate the study of the immune sys-
tem in a bewildering range of states, including in mod-
els of infection, autoimmunity and auto inflammation. 
More recently we have seen the application of newer 
tools (including small molecule agonists or antagonists) 
and approaches (such as techniques that measure the flux 
though metabolic pathways) to the study of the immune 
system, which is providing us with exciting new insights 
into the core of what is happening during an immune 
response. That core involves complex and specific meta-
bolic changes that directly connect to those aspects of 
immunity and host defence so beloved by immun-
ologists: a detailed account of the molecular regulation 
of events occurring in immune cells in health and dis-
ease. In this Review, we provide a refresher course of six 
main metabolic pathways that occur in cells and discuss 
their possible roles in immunity. We will focus mainly on 
specific examples in T cells, macrophages and dendritic 
cells (DCs), since most of the recent new insights have 
been made in these cell types. We will also provide a list 
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Mechanistic target of 
rapamycin
(mTOR). An atypical serine/
threonine kinase that is present 
in two distinct complexes. 
mTOR complex 1 (mTORC1), 
is composed of mTOR, Raptor, 
MLST8 (also known as GβL), 
PRAS40 and DEPTOR; it is 
inhibited by rapamycin.

A guide to immunometabolism 
for immunologists
Luke A. J. O’Neill1, Rigel J. Kishton2 and Jeff Rathmell2

Abstract | In recent years a substantial number of findings have been made in the area of 
immunometabolism, by which we mean the changes in intracellular metabolic pathways in 
immune cells that alter their function. Here, we provide a brief refresher course on six of the 
major metabolic pathways involved (specifically, glycolysis, the tricarboxylic acid (TCA) cycle, 
the pentose phosphate pathway, fatty acid oxidation, fatty acid synthesis and amino acid 
metabolism), giving specific examples of how precise changes in the metabolites of these 
pathways shape the immune cell response. What is emerging is a complex interplay between 
metabolic reprogramming and immunity, which is providing an extra dimension to our 
understanding of the immune system in health and disease.
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Metabolic Reprogramming
of Immune Cells in Cancer Progression
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Immune cells play a key role in host defense against infection and cancer. Upon encountering danger signals,
these cells undergo activation leading to a modulation in their immune functions. However, recent studies
reveal that immune cells upon activation also show distinct metabolic changes that impact their immune
functions. Such metabolic reprogramming and its functional effects are well known for cancer cells. Given
that immune cells have emerged as crucial players in cancer progression, it is important to understand
whether immune cells also undergo metabolic reprogramming in tumors and how this might affect their
contribution in cancer progression. This emerging aspect of tumor-associated immune cells is reviewed
here, discussing metabolic reprogramming of different immune cell types, the key pathways involved, and
its impact on tumor progression.

Introduction
The role of immune cells in cancer progression iswell-recognized.
Inflammation and immune evasion are considered as hallmarks of
cancer progression, highlighting the direct involvement of im-
mune cells (Hanahan and Weinberg, 2011). Supporting this fact,
macrophages, which represent one of the major immune infil-
trates in solid tumors, influence various aspect of cancer progres-
sion, e.g., survival and proliferation of cancer cells, angiogenesis,
metastasis, cancer-related inflammation, and immunosuppres-
sion (Biswas and Mantovani, 2010; Qian and Pollard, 2010). Simi-
larly, other studies have indicated the involvement of almost
every immune cell type including T cells, B cells, NK cells, NKT
cells, basophils, neutrophils, dendritic cells (DCs), and myeloid-
derived suppressor cells (MDSCs) in the regulation of cancer
progression (Bindea et al., 2013; Biswas and Mantovani, 2010;
Hanahan and Coussens, 2012). These observations have led to
a major interest in characterizing the immune-microenvironment
in cancer bearers with an aim to design immunotherapies that
target specific immune subsets or their associated molecules in
cancer (Bindea et al., 2013; Quail and Joyce, 2013).
Recent studies have revealed that immune cells possess

distinct metabolic characteristics that influence their immuno-
logical functions. For example, macrophage polarization is
related to distinct metabolic characteristics pertaining to energy
metabolism, iron metabolism, and lipid metabolism (Biswas and
Mantovani, 2010; Jha et al., 2015). Similarly, alterations in
glucose and amino acid metabolism were reported for DCs
and T cells upon activation (Pearce and Pearce, 2013). Taken
together, these studies indicate that metabolic reprogramming
is an important feature of immune cell activation.
Metabolic reprogramming has been suggested as a key hall-

mark of cancer progression (Hanahan and Weinberg, 2011;
Ward and Thompson, 2012). Cancer cells undergo an alteration
in their mode of energy metabolism in order to fulfill the bioener-
getic and biosynthetic needs for rapid cell proliferation, aswell as
to adapt to the tumor microenvironment. While such metabolic
alterations in cancer cells has been long known, a key question

that has not been investigated to depth is whether tumor-asso-
ciated immune cells also undergo metabolic alterations during
cancer progression. This is a pertinent question given the inte-
gral role of immune cells in cancer and their metabolic character-
istics in other scenarios (e.g., infection, metabolic syndrome).
This issue is reviewed here, highlighting the importance of
metabolic reprogramming in the regulation of tumor-associated
immune cell functions. In addition, some key molecular determi-
nants that mediate the metabolic reprogramming in these cells
and the therapeutic implications that might arise from these find-
ings are also discussed.

Metabolic Reprogramming of Cancer Cells
Cancer cells need to fulfill their bioenergetic and biosynthetic
demands to support rapid proliferation. To do so, they alter their
energy metabolism to a glycolytic mode, even under aerobic
conditions, for rapid energy generation. This aerobic form of
glycolysis is also known as Warburg effect (Ward and Thomp-
son, 2012). Thus, tumor cells get most of their energy through
high consumption of glucose and its conversion into lactic acid
by glycolysis, as opposed to mitochondrial oxidative phosphor-
ylation in normal cells (Figure 1). The glycolytic switch is also a
useful adaptation to survive in the hypoxic tumor microenviron-
ment. The shift to glycolysis is triggered by various mechanisms
reviewed elsewhere (Cairns et al., 2011; Ward and Thompson,
2012). For example, growth-factor signaling activates phosphoi-
nositol 3-kinase (PI3K)-AKT, which induces the expression of
glucose transporters (e.g., GLUT1) and the activation of glyco-
lytic enzymes (e.g., HK2, PFKFB3). Mechanistically, PI3K-AKT
signaling activates mammalian target of rapamycin (mTOR),
which in turn activates the transcription factor, hypoxia-inducible
factor 1 (HIF1). HIF1 cooperates with other transcription factors
or oncogenes such as c-Myc, p53, or Oct1 to induce the expres-
sion of glycolytic genes including GLUT1, HK2, PFKFB3, LDHA,
and suppressors of tricarboxylic acid (TCA) cycle such as PDK
(Cairns et al., 2011; Semenza, 2003; Ward and Thompson,
2012). Moreover, mutations in TCA cycle enzymes such as
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SUMMARY

Adaptive immune responses mediated by T cells and B cells are crucial for protective immunity against path-
ogens and tumors. Differentiation and function of immune cells require dynamic reprogramming of cellular
metabolism. Metabolic inputs, pathways, and enzymes display remarkable flexibility and heterogeneity,
especially in vivo. How metabolic plasticity and adaptation dictate functional specialization of immune cells
is fundamental to our understanding and therapeutic modulation of the immune system. Extensive progress
has been made in characterizing the effects of metabolic networks on immune cell fate and function in
discretemicroenvironments or immunological contexts. In this review, we summarize how rewiring of cellular
metabolism determines the outcome of adaptive immunity in vivo, with a focus on howmetabolites, nutrients,
and driver genes in immunometabolism instruct cellular programming and immune responses during infec-
tion, inflammation, and cancer in mice and humans. Understanding context-dependent metabolic remodel-
ing will manifest legitimate opportunities for therapeutic intervention of human disease.

INTRODUCTION

Adaptive immune responses are essential for the clearance of
pathogens and tumors but are also implicated in the develop-
ment of autoimmune and inflammatory disorders. Aside from
immunological cues, nutrients andmetabolites are major regula-
tors of immune cell function. Also, dynamic and bidirectional
interplay between immunological signals and metabolism or-
chestrates adaptive immunity (Chapman et al., 2020). However,
there are differential requirements or compensatory roles for nu-
trients and metabolic enzymes in vivo compared with in vitro. As
examples, extracellular serine supports T cell responses in vitro
but glucose-derived de novo synthesized serine is important for
T cell responses in vivo (Ma et al., 2017, 2019a), and certain
metabolic enzymes, such as hexokinase 2 (HK2), that are
dispensable in vitro are crucial in some in vivo contexts (Gu
et al., 2021; Tan et al., 2017). Also, selective nutrients or meta-
bolic pathways can functionally compensate for glucose meta-
bolism in certain environments in vivo (Mager et al., 2020;
Wang et al., 2020b; Wu et al., 2020b). Therefore, we are only
beginning to understand how immune cells undergo context-
dependent metabolic adaptation to support their differentiation
and function in physiologically relevant conditions.

Here, we summarize metabolic adaptation in lymphocytes un-
der different immunological contexts in vivo. Specifically, we
highlight the cell-intrinsic and cell-extrinsic metabolic factors
that regulate adaptive immune responses to infection, inflamma-
tion, and cancer in murine models, as well as the emerging
studies in the human system. A better understanding of how
metabolic rewiring shapes adaptive immunity may uncover addi-
tional immunotherapies or vaccination strategies for human
disease.

METABOLIC ADAPTATION IN ACUTE AND CHRONIC
INFECTION

Naive T and B cells dynamically alter their metabolic programs
upon activation. During the period of quiescence exit, glucose
metabolism, nutrient uptake, and anabolism are rapidly upregu-
lated—associated with lactate production. Moreover, mitochon-
drial metabolism and oxidative phosphorylation (OXPHOS) are
also increased (Boothby and Rickert, 2017; Chapman et al.,
2020; Reina-Campos et al., 2021). These events are coordinated
by selective transcription factors that induce gene expression
programs necessary for anabolism, including MYC (Wang
et al., 2011), IRF4 (Man et al., 2013), BATF (Kurachi et al.,
2014), NFAT (Klein-Hessling et al., 2017; Vaeth et al., 2017),
and SREBPs (Kidani et al., 2013), as well as mechanistic target
of rapamycin (mTOR)-associated signaling (Tan et al., 2017;
Yang et al., 2013a) (Figure 1). Accordingly, inhibition of anabolic
metabolism impairs the activation and proliferation of lympho-
cytes (Bailis et al., 2019; Chang et al., 2013; Kidani et al., 2013;
Peng et al., 2016; Ron-Harel et al., 2016; Tan et al., 2017; Xu
et al., 2021a, 2021b; Yang et al., 2013a). Effector T and B cell
subsets also display differences in glucose, polyamine, purine,
lipid, and glutamine metabolism that regulate their differentiation
and function (Caro-Maldonado et al., 2014; Clever et al., 2016;
Ersching et al., 2017; Johnson et al., 2018; Michalek et al.,
2011; Puleston et al., 2021; Shi et al., 2011; Sugiura et al.,
2021; Tsui et al., 2018; Wagner et al., 2021). These discrete
metabolic programs are also dependent upon transcription fac-
tors that can sense metabolic signals, such as HIF-1a (Clever
et al., 2016; Shi et al., 2011) (Figure 1). Thus, anabolism drives
cellular activation and differentiation. However, metabolic adap-
tation continues to occur during the course of infection, and such
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