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Objectives

1) Understand core metabolic pathways in immune cells.
- Glycolysis, oxidative phosphorylation, fatty acid oxidation.
- Why do immune cells depend on a specific metabolic pathway?

2) Learn strategies to metabolically engineer immune cells for cancer therapy.
- Metabolic gene deletion/overexpression
- Small molecule inhibitors of metabolic processes
- Nutrient supplementation



Lecture overview

1) Introduction to immunology and cellular metabolism

2) Metabolism is closely connected to immune cell phenotype and function
1) Innate immunity: Macrophages
2) Adaptive immunity: T cells
1) CDA4 T cells (helper T cells)
2) CD8T cells (cytotoxic T cells)
3) T cell exhaustion

3) Immunotherapy of cancer: targeting metabolism
1) Dealing with metabolic factors that exhaust anti-tumor immunity

2) Metabolic engineering to enhance antitumor immunity



Overview

1) Introduction to immunology and cellular metabolism

1) How does metabolism contribute to cell function?
1) Energy
2) Building blocks for cellular function and proliferation (Lipids, proteins, nucleic acids)
3) Signaling function (e.g. epigenetics)

2) Overview of immune cell types



What is cellular metabolism?
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Overview of major metabolic pathways in cells
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Energy production through glucose fermentation versus
oxidation
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PET scan (Positron Emission Tomography) as evidence
of glycolytic bias in tumors

PET Scan: An Example
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Mitochondria: the energy powerhouse
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Electron transport chain and oxidative phosphorylation
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Fatty acid B-oxidation

HHO
== P CHy(CHz)i—Cy Ci-C—SCoA
Fatty acyl-CoA H H
- FAD
dehydrogenase
FADH,
H O
CHg(CHz)a—C  C—C—SCoA
trans-A%-enoyl-CoA H | H,0
H (0]
CHg(CH)a—C- CH,—C—SCoA
3-L-hydroxyacyl-CoA OH /NAD‘
»\k,.,j,Yr:‘

NADH + H*

(o} o}

CHs(CHz)s—C - CH,
[3-ketoacyl-CoA

C-—SCoA

CoA-SH

MTP

B-ketothiolase

(o] (o]
S CHg(CHg)n—C—SCoA CH;—C—SCoA
Acetyl-CoA

Fatty acyl-CoA (-2C)

Fatty acid oxidation produces Acetyl-CoA in

the cytosol, which is imported by CPT

enzymes into the mitochondria for oxidation

-

Cytosol Matrix
Acyl-CoA
i Acyl-CoA
+

Carnitine

Etomoxir

Acyl-carnitine

Carnitine

%arnitine

Acyl-carnitine

Carnitine

Nomura M. et. al., (2016) Nat. Immunol.



The TCA cycle is a major producer of cellular building blocks
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Metabolism in cellular signaling
Regulation of gene expression as an example
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Overview

1) Introduction to immunology and cellular metabolism

1) How does metabolism contribute to cell function?
1) Energy
2) Building blocks for cellular function and proliferation (Lipids, proteins, nucleic acids)
3) Signaling function (e.g. epigenetics)

2) Overview of immune cell types



Innate and adaptive immune response
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Macrophage polarization is accomplished by engagement of specific metabolic pathways
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Warburg glycolysis is essential for M1 activation
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Fatty acid oxidation is essential for M2 activation
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Histone lactylation, a new epigenetic modification
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Innate and adaptive immune response
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3 signals are required to fully activate a T cell
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The T cell response to acute infection and vaccination

Acute infection/vaccination
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Memory T cells ensure long-lasting immune protection
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Long-lasting stem cell-like memory CD8+ T cells with a
naive-like profile upon yellow fever vaccination
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3 4 signals are required to fully activate a T cell
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T cell clonal expansion and differentiation requires a
massive activation of specific metabolic pathways
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Energy demands and supply change during acute and resolving phases
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MTOR plays a central role in CD8 T cell activation and

differentiation
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MTORC2 controls CD8 T cell memory differentiation in a
FOXO1l-dependent manner
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MTORC2 controls CD8 T cell memory differentiation in a
FOXO1-dependent manner

Short lived
-> -> ‘ effector

Memory
- ‘ precursor

effector

\

’ Eomes/Tcf-1

Rictor KO

Nucleus

Increased memory

Zhang, Romero et al., Cell Rep. 2016



Helper | cell alIfTerentiation Is also cControliea ny
mMTOR

. ? “ )
cytokines J*’,

Quiescent
OxPhos

NS

Hi mTORC1 activity Hi mTORC1 activity Hi mTORC1 activity Variable mTORC1 activity
? Glut-1 Hi mTORC2 activity t HIF1a JGlut1 P AMPK
4 Glycolysis 4 Glycolysis f Glycolysis | Giycolysis 1 Lipid Oxidation

Coe D. J. et. al., (2014) Frontier in Immunol.



T cell clonal expansion requires a massive activation of

specific metabolic pathways
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Memory T cells focus on mitochondrial metabolism
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Memory T cells focus on mitochondrial metabolism
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Tumor-infiltrating T cells: prototype of T cell exhaustion
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Chronic viral infection and cancer are characterized by
antigen persistence and T cell exhaustion

Chronic infection/cancer
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3 signals model to induce T cell exhaustion
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Metabolism in exhaustion
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Metabolism in exhaustion
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Glucose level (mM)

Cancer cells steal glucose from T cells

Glucose levels Glucose is required for High glycolytic tumors
are low in tumors effector T cell function (hexokinase 2 overexpression, HK2-OE)
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Metabolic stress in the tumor microenvironment and its
Impact on antitumor immunity
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Cancer immunotherapy strategies

Vaccine Therapy Cell-Transfer Therapy

Antitumor
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Adapted from Rosenberg, NEJM, 2004



Immunotherapy is enhanced by nutrient supplementation
through metabolically engineered bacteria
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Arginine supply synergizes with checkpoint blockade immunotherapy
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Tumor infiltrating lymphocytes have defective mitochondria

Enhancing mitochondrial biogenesis allows T cells to maintain anti-tumor function

Day 23 Tumor
10001 - PBS Frequencies of transferred cells
> @ i 50+
. ﬂg 8004 @ SCR +isotype . ™
CDS8 Teﬁc CD8* TIL s -®- SCR+aPD-1 3 ]
By g 6001 @ PGC-1a + isotype = 204
° _ _ 9
9 400+ -®- PGC-1a + aPD-1 g 20
g S
é E 200+ < 104
o
o 0+ 1 0-
g 25
Days after tumor engraftment :
gey
Day 21 Tumor
Spleen
Mitochondrial respiration P
4000+ * SCR
>< ke |_| "
o K d 206 | |133
S 2 3000- °
3 £, _
£ 20004 4
£ o 2
S
S 1000+
= °
= 35,2 10,0
0 r r >
SN cD127
QC‘:

Scharping et al., Immunity 2016 Dumauthioz, Wenes, Romero et al., Cell.Mol.Immunol. 2020



Metabolic reprogramming of terminally exhausted CD8+
T cells by IL-10 enhances anti-tumor immunity
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AT cell memory phenotype is a good prognostic factor for
adoptive cell transfer immunotherapy in cancer
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AT cell memory phenotype is a good prognostic factor for
adoptive cell transfer immunotherapy in cancer
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Metabolic intervention during ex vivo expansion for adoptive
cell immunotherapy
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Metabolic intervention during ex vivo expansion for adoptive
cell immunotherapy
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Reductive carboxylation instructs effector T cell differentiation
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IDH2 inhibition improves tumour control in a model of murine HER2-
CAR T cell ACT against melanoma

Untreated
= 15007 = DMSOHER2-CART
S - IDH2i HER2-CAR T
£1000-
| )
Polyclonal + DMSO / IDH2i . _é
CD8* T cells 5 500 1 *kk
DMSO £ ]
" iy e |DH2i = —"
HER2 CAR . . . .
transduction ACT CD62L @ - p” p
Days
/\
B16-HER2 @ - » Dissection
do dé d7 d21

| omso Her2 @R m
Cyclophosphamide
preconditionning

IDH2i HER2 [ & ' M‘



IDH2 inhibition improves tumour control in a model ofhuman BCMA-
CAR T cell ACT against multiple myeloma
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By identifying the metabolic metro map of our immune cells
will help to understand better their functions
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